Acta Med. 2016, 59: 107-112

https://doi.org/10.14712/18059694.2017.36

Histological Evaluation of Decellularized Skeletal Muscle Tissue Using Two Different Decellularization Agents

Hana Hrebíková, Magda Voborníková, Milada Hetešová, Jaroslav Mokrý

Department of Histology and Embryology, Charles University, Medical Faculty, Hradec Králové, Czech Republic

Received August 3, 2016
Accepted October 19, 2016

References

1. Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32: 462–84. <https://doi.org/10.1016/j.biotechadv.2013.12.012> <PubMed>
2. Hurd SA, Bhatti NM, Walker AM, Kasukonis BM, Wolchok JC. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 2015; 49: 9–17. <https://doi.org/10.1016/j.biomaterials.2015.01.027> <PubMed>
3. Wang L, Johnson JA, Chang DW, Zhang Q. Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 2013; 34: 2641–54. <https://doi.org/10.1016/j.biomaterials.2012.12.048> <PubMed>
4. Criswell TL, Corona BT, Wang Z et al. The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo. Biomaterials 2013; 34: 140–9. <https://doi.org/10.1016/j.biomaterials.2012.09.045> <PubMed>
5. Yamamoto K, Murphy G, Troeberg L. Extracellular regulation of metalloproteinases. Matrix Biol 2015; 44–46: 255–63. <https://doi.org/10.1016/j.matbio.2015.02.007>
6. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17: 153–62. <https://doi.org/10.1111/j.1524-475X.2009.00466.x>
7. Reddy PP, Barrieras DJ, Wilson G et al. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol 2000; 164: 936–41. <https://doi.org/10.1016/S0022-5347(05)67221-7>
8. Rosario DJ, Reilly GC, Salah EA, Glover M, Bullock AJ, MacNeil S. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 2008; 3: 145–56. <https://doi.org/10.2217/17460751.3.2.145>
9. Quarti A, Nardone S, Colaneri M, Santoro G, Pozzi M. Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases. Interact Cardivasc Thorac Surg 2011; 6: 659–72.
10. Dong J, Li Y, Mo X. The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J Surg Res 2013; 183: 56–67. <https://doi.org/10.1016/j.jss.2012.11.047>
11. Weber B, Dijkman PE, Scherman J et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 2013; 34: 7269–80. <https://doi.org/10.1016/j.biomaterials.2013.04.059>
12. Nonaka PN, Uriarte JJ, Campillo N et al. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate. Respir Physiol Neurobiol 2014; 200: 1–5. <https://doi.org/10.1016/j.resp.2014.04.008>
13. OʼNeill JD, Anfang R, Anandappa A et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 2013; 96: 1046–55. <https://doi.org/10.1016/j.athoracsur.2013.04.022> <PubMed>
14. Gupta SK, Dinda AK, Potdar PD, Mishra NC. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2013; 33: 4032–8. <https://doi.org/10.1016/j.msec.2013.05.045>
15. Su Z, Ma H, Wu Z et al. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C Mater Biol Appl 2014; 44: 440–8. <https://doi.org/10.1016/j.msec.2014.07.039>
16. Baptista MP, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53: 604–17. <https://doi.org/10.1002/hep.24067>
17. Ott CH, Mathiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine 2007; 14: 213–21. <https://doi.org/10.1038/nm1684>
18. Ungerleider JL, Johnson TD, Rao N, Christman KL. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods 2015; 84: 53–9. <https://doi.org/10.1016/j.ymeth.2015.03.024> <PubMed>
19. Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011; 32: 7870–82. <https://doi.org/10.1016/j.biomaterials.2011.07.016>
20. Caralt M, Uzarski JS, Iacob S et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 2015; 15: 64–75. <https://doi.org/10.1111/ajt.12999> <PubMed>
21. Ott HC, Matthiesen TS, Goh SK et al. Perfusion decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14: 213–21. <https://doi.org/10.1038/nm1684>
22. Uygun BE, Soto-Gutierrez A, Yagi H et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16: 814–20. <https://doi.org/10.1038/nm.2170> <PubMed>
23. Reing JE, Brown BN, Daly KA et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010; 31: 8626–33. <https://doi.org/10.1016/j.biomaterials.2010.07.083> <PubMed>
24. Du L, Wu X, Pang K, Yang Y. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. Br J Ophthalmol 2011; 95: 410–4. <https://doi.org/10.1136/bjo.2008.142539>
25. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32: 3233–43. <https://doi.org/10.1016/j.biomaterials.2011.01.057> <PubMed>
26. Hrebikova H, Diaz D, Mokry J. Chemical decellularization: a promising approach for preparation of extracellular matrix. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159: 12–7. <https://doi.org/10.5507/bp.2013.076>
27. Grauss RW, Hazekamp MG, Oppenhuizen F, Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC. Histological evaluation of decellularized porcine aortic valves: matrix changes due to different decellularization methods. Eur J Cardiothorac Surg 2005; 27: 566–71. <https://doi.org/10.1016/j.ejcts.2004.12.052>
28. Ross MH, Pawlina W. Histology, text and atlas: with correlated cell and molecular biology. 6th ed. Philadelphia: Wolter Kluwer, 2011.
29. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004; 12: 367–77. <https://doi.org/10.1016/j.trim.2003.12.016>
30. Gilpin SE, Guyette JP, Gonzalez G et al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 2014; 33: 298–308. <https://doi.org/10.1016/j.healun.2013.10.030>
31. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006; 27: 3675–83.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive