Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation

Anton S. Tkachenko1,*, Galina I. Gubina-Vakulyck2, Vladimir K. Klochkov3, Nataliya S. Kavok3, Anatolii I. Onishchenko1, Tatyana V. Gorbach1, Oksana A. Nakonechna1

ABSTRACT

Aim: To evaluate the effects of orally administered gadolinium orthovanadate GdVO₄:Eu³⁺ nanoparticles (VNPs) on the course of chronic carrageenan-induced intestinal inflammation.

Methods: Samples of small intestinal tissue were collected from four groups of rats (intact, after administration of VNPs, with carrageenan-induced intestinal inflammation, with carrageenan-induced intestinal inflammation orally exposed to VNPs) to assess the intestinal morphology and HSP90α expression. Levels of seromucoid, C-reactive protein, TNF-α, IL-1β and IL-10 were determined in blood serum.

Results: Oral exposure to VNPs was associated with neither elevation of inflammation markers in blood serum nor HSP90α overexpression in the small intestine, i.e. no toxic effects of VNPs were observed. Carrageenan-induced intestinal inflammation was accompanied by higher levels of TNF-α and IL-1β, as well as HSP90α upregulation in the intestinal mucosa, compared with controls. Administration of VNPs to rats with enteritis did not lead to statistically significant changes in concentrations of circulating pro-inflammatory cytokines with the trend towards their increase.

Conclusion: No adverse effects were observed in rats orally exposed to VNPs at a dose of 20 μg/kg during two weeks. Using the experimental model of carrageenan-induced enteritis, it was demonstrated that VNPs at the dose used in our study did not affect the course of intestinal inflammation.

KEYWORDS

nanoparticles; intestinal inflammation; HSP90α; rats; carrageenan

AUTHOR AFFILIATION

1 Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
2 Department of Pathological Anatomy, Kharkiv National Medical University, Kharkiv, Ukraine
3 Institute for Scintillation Materials National Academy of Sciences of Ukraine, Kharkiv, Ukraine
* Corresponding author: Department of Biochemistry, Kharkiv National Medical University; Nauky ave, 4, 61022, Kharkiv, Ukraine; e-mail: antontkachenko555@gmail.com

Received: 27 June 2019
Accepted: 8 January 2020
Published online: 18 May 2020
INTRODUCTION

Inflammatory bowel disease (IBD) is characterized by a chronic intestinal inflammation and includes two subtypes: Crohn's disease (CD) and ulcerative colitis (UC) (1). In CD, the inflammation is transmural and may affect the entire gut, whereas in UC it is mainly limited to the mucosal layer of the large intestine (2). IBD is a multifaceted disease whose development is associated with complex interactions between genetic and environmental factors, including features of intestinal microbiota, abnormalities of the innate immune system, dietary habits, etc. (3). Its conventional treatment includes 5-aminosalicylate, glucocorticoid drugs, methotrexate, azathioprine, and anti-tumor necrosis factor (TNF) agents such as infliximab, adalimumab, golimumab. Furthermore, IL-12/23 antagonists (ustekinumab), inhibitors of intestinal lymphocyte trafficking (vedolizumab, a monoclonal antibody to the α4β7 integrin), and small molecule inhibitors of Janus kinases, tofacitinib, are currently available in the market (4–8). Nevertheless, the development of novel therapeutic agents for the treatment of IBD remains of huge importance, since the current first-line anti-TNF treatment may be ineffective or the intolerance to anti-TNF agents can emerge in patients (9).

There is strong evidence that IBD is accompanied by the excessive generation of reactive oxygen species (ROS) and subsequent development of oxidative stress (10, 11). Overproduction of ROS in IBD results in oxidative damage to macromolecules (lipid peroxidation and protein oxidative modification), loss of cell membrane integrity, low ATP production by mitochondria, apoptosis, etc. (10, 12). This fact substantiates the search for novel, effective antioxidant-based agents for the treatment of IBD (13). In particular, the therapeutic potential of nanoparticles with antioxidant properties has been studied for decades. Converging lines of evidence indicate that they act as ROS scavengers (14, 15). It has been reported that gadolinium orthovanadate GdVO$_4$:Eu$^{3+}$ nanoparticles (VNPs) can scavenge free radicals in vitro (16). However, little is known about the therapeutic action of VNPs in vivo. To assess the therapeutic potential of VNPs, we have chosen the already characterized experimental model of carrageenan-induced intestinal inflammation (17–19).

The aim of our research was to study the impact of orally administered VNPs on the course of carrageenan-induced intestinal inflammation.

MATERIALS AND METHODS

1. DESIGN OF THE STUDY, CHARACTERISTICS OF ANIMALS AND GROUPS

Fifty female WAG rats weighing 160–190 g were provided by the vivarium of Kharkiv National Medical University. They were randomly subdivided into five equal groups (n = 10). Carrageenan-induced intestinal inflammation was induced in the rats from groups A and B. The animals from group B were orally administered a water solution of VNPs at a dose of 20 μg/kg of weight against the background of intestinal inflammation. Group C included the intact animals fed on a standard diet and obtained a solution of VNPs at a dose of 20 μg/kg of weight. Groups D$_1$ and D$_2$ served as controls and consisted of intact rats. The rats were housed in cages. They were maintained in standard laboratory conditions at room temperature (24 ± 2 °C). Access to food was free. All the animals were sacrificed. Blood samples were collected to prepare serum for evaluating the systemic levels of inflammation markers. Furthermore, fragments of small intestine were sampled for immunohistochemical studies.

2. CHARACTERISTICS OF NANOPARTICLES

The synthesis of GdVO$_4$:Eu$^{3+}$ nanoparticle water colloidal solution was carried out in accordance with the method reported earlier (21). Briefly, 10 mL of aqueous solution of rare-earth chlorides (0.01 mol/L) was mixed with 8 mL of ethylenediaminetetraacetic acid disodium salt (EDTA 2 Na) solution (0.01 mol/L). It was followed by the addition of 8 mL Na$_2$VO$_4$ (0.01 mol/L) to the solution obtained dropwise (pH = 13). The mixture was intensively stirred by a magnetic stirrer until yellowish transparent solution was formed.

The colorless transparent solution obtained as a result scattered light under the side illumination (Tindal cone). The solution was cooled and dialyzed against water for 24 h to remove the excess of ions. A dialysis membrane with a molecular weight cutoff of 12 kDa with a pore size of approximately 2.5 nm was used. The composition of spindle-like nanoparticles – Gd$_{0.95}$ Eu$_{0.05}$VO$_4$ – with average size of 8 × 25 nm was formed (Figure 1).
than 15% of algal cellulose. The solution was prepared at least 24 h prior to its administration and stored at low temperature (2 °C).

Development of intestinal inflammation was confirmed in each animal from groups A and B using routine histological staining techniques (hematoxylin and eosin staining, PAS reaction, and halocyanine-chrome alum Einarsson’s stain).

4. DETERMINATION OF SYSTEMIC LEVELS OF INFLAMMATORY AND ANTI-INFLAMMATORY BIOMARKERS

Systemic levels of pro-inflammatory cytokines TNF-α and IL-1β were assessed by commercially available ELISA kits purchased from eBioScience (Austria). The procedures were done strictly in accordance with manufacturers’ instructions. Concentrations of TNF-α, IL-1β and IL-10 in blood serum were expressed in pg/ml. ELISA method was also used to assess the levels of anti-inflammatory cytokine IL-10 in blood serum of animals (eBioScience ELISA kit).

Furthermore, the levels of inflammatory markers such as seromucoid and C-reactive protein were determined in blood serum of rats from groups C and D, by routine techniques. Seromucoid and C-reactive protein levels were assessed using commercially available kits manufactured by Filicit-Diagnostika (Ukraine). Seromucoid levels were expressed in units of the Shank-Hoagland scale (SH units), whereas the content of C-reactive protein in blood serum was represented in mg/L. In addition, the content of middle molecules was determined in blood serum of animals from groups C and D, by the Gabrielyan's method to evaluate the severity of endogenous intoxication (22). Trichloacetic acid was added to serum. Then the mixture was centrifuged during 20 minutes at 3000 rpm. After centrifugation the samples were 10-fold diluted with distilled water. After stirring, the measurement was performed at λ = 254 nm and at λ = 280 nm. The 280 nm / 254 nm absorbance ratio was calculated. Concentrations of middle molecules were expressed in standard units.

5. IMMUNOHISTOCHEMICAL EVALUATION OF HSP90α EXPRESSION IN THE SMALL INTESTINE

Tissue samples of small intestine were fixed in a 10% formalin solution. Then paraffin-embedded tissues were used to obtain 4-μm-thick sections, which were immunostained using commercially available mouse monoclonal antibodies to HSP90α purchased from Thermo Fischer Scientific (USA). After incubation with the primary antibodies, the microslides were treated with an anti-(mouse IgG)-horse-radish peroxidase conjugate. Visualization was carried out using 3,3’-diaminobenzidine (DAB) staining. The presence of brown coloration indicated the positive reaction.

6. BIOETHICS

All the experimental procedures were performed following the guidelines of EU Directive 2010/63/EU on the protection of animals used for scientific purposes, which is based on the Council of Europe Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS123).

7. STATISTICAL ANALYSIS

Numerical data were analyzed using the Kruskal-Wallis ANOVA test if three independent parameters were compared. It was followed by the Dunn’s multiple comparison post-hoc test. Two independent groups of variables were compared by a non-parametric Mann-Whitney U test. It was selected based on the outcome of the Shapiro-Wilk and Kolmogorov-Smirnov normality tests. Differences were considered statistically significant at p < 0.05. The data obtained in our research were analyzed with Graph-Pad Prism 5.0 (GraphPad software, USA).

RESULTS

To assess the toxicity and pro-inflammatory potential of VNPs, we determined the levels IL-1β, middle molecules, C-reactive protein, and seromucoid in blood serum of rats from group C and compared them with the corresponding parameters of animals from the control group D1. The concentrations of pro-inflammatory IL-1β, middle molecules and acute phase proteins (seromucoid and C-reactive protein) in blood serum of rats orally exposed to the solution of VNPs were statistically insignificant (p > 0.05) higher than in the animals from the control group D1 (Table 1).

Morphological studies of small intestine in rats from both control groups demonstrated that the epithelial layer of villi was intact. Epithelial cells at the top of intestinal villi regenerated well. No significant leukocyte infiltrate was found (Figures 2, 3).

Immunolabelling allowed us to find out that HSP90α was primarily expressed in the cytosol. HSP90α-positive cells were detected both in the epithelial lining and intestinal glands. Immunostaining was also observed in the lami-

Tab. 1 Evaluation of orally administered GdVO₄ nanoparticle toxicity (Me (IQR)).

<table>
<thead>
<tr>
<th>Groups of animals</th>
<th>Group D₁ (intact animals, n = 10)</th>
<th>Group C (rats orally exposed to VNPs, n = 10)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood serum parameters (units)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β (pg/ml)</td>
<td>62.32 (47.23; 69.89)</td>
<td>64.21 (55.36; 75.54)</td>
<td>0.529</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)</td>
<td>1.12 (0.97; 1.18)</td>
<td>1.20 (1.09; 1.30)</td>
<td>0.059</td>
</tr>
<tr>
<td>Seromucoid (SH units)</td>
<td>3.00 (2.88; 3.35)</td>
<td>3.45 (3.10; 3.68)</td>
<td>0.129</td>
</tr>
<tr>
<td>Middle molecules (standard units)</td>
<td>0.080 (0.074; 0.084)</td>
<td>0.083 (0.079; 0.088)</td>
<td>0.172</td>
</tr>
</tbody>
</table>

Note: Differences were considered statistically significant at p < 0.05
na propria. However, the amount of HSP90α-stained cells both in the lamina propria and intestinal epitheliocytes was moderate (Figures 2, 3).

Evaluation of the impact of VNPs on small intestine morphology and HSP90α expression showed that the oral administration of GdVO₄ nanoparticles does not differ from the control group D₁. HSP90α is moderately expressed in the lamina propria and epitheliocytes (marked with red arrows). Immunohistochemical reaction with antibodies to HSP90α. ×400.

In this study, we observed almost the same pattern of HSP90α expression in rats orally exposed to VNPs as in groups D₁ and D₂. Qualitative analysis indicated that HSP90α was moderately expressed in the lamina propria, epithelial cells, and glands (Figure 2).

We observed the statistically significant (p < 0.0001 and p = 0.005, respectively) 4.1-fold and 1.8-fold increase in the concentrations of circulating pro-inflammatory cytokines TNF-α and IL-1β in rats from group A compared with the control group D₁ (Table 2). The content of anti-inflammatory IL-10 did not differ from controls (p > 0.05). Levels of TNF-α and IL-1β in rats with carrageenan-induced inflammation treated with VNPs was higher than in group A. However, the difference was found to be statistically insignificant. Circulating IL-10 levels in animals from group B were statistically insignificantly (p > 0.05) higher than in both group D₁ and group A (Table 2).

Tab. 2 Levels of pro-inflammatory markers in untreated and treated rats with carrageenan-induced intestinal inflammation (Me (IQR)).

<table>
<thead>
<tr>
<th>Blood serum parameters (units)</th>
<th>TNF-α (pg/ml)</th>
<th>IL-1β (pg/ml)</th>
<th>IL-10 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups of animals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group D₁ (intact animals, n = 10)</td>
<td>38.9 (33.2; 48.4)</td>
<td>52.01 (36.17; 67.04)</td>
<td>54.2 (48.8; 64.3)</td>
</tr>
<tr>
<td>Group A (rats with carrageenan-induced intestinal inflammation, n = 10)</td>
<td>161.2 (114.6; 236.8)</td>
<td>96.08 (80.89; 118.51)</td>
<td>53.0 (47.7; 59.8)</td>
</tr>
<tr>
<td>Group B (rats with carrageenan-induced intestinal inflammation treated with VNPs, n = 10)</td>
<td>223.7 (112.4; 360.4)</td>
<td>140.03 (99.91; 180.88)</td>
<td>57.6 (48.2; 72.6)</td>
</tr>
</tbody>
</table>

Note:
Differences were considered statistically significant at p < 0.05 (* indicates the statistical significance of differences between two independent variables). p₁ is the difference between groups D₁ and D₂, while p₂ is the difference between groups A and B.
We demonstrated that the oral intake of carrageenan-containing solution by animals from group A resulted in the development of intestinal inflammation, evidenced by the damage to the intestinal villi, especially at their top. Furthermore, the damaged intestinal villi lacked epithelial cells in some regions. The lamina propria both in the villi and at the level of glands was significantly infiltrated with macrophages (Figure 3).

Analysis of HSP90α immunostaining showed that the epithelial cells of villi were strongly labeled. Moreover, the significant HSP90α upregulation was detected in glandular epithelial cells, not only at the base of intestinal glands but also above. Both the number of HSP90α-labeled epithelial cells and the intensity of immunostaining were higher in group A compared with controls (Figure 3).

Administration of VNPs against the background of carrageenan-induced inflammation by rats from group B was associated with the leukocyte infiltration with the predominance of macrophages. The infiltration abundance in rats from group B did not differ significantly from group A. In addition, the villi with the undamaged epithelial lining were found. It is interesting to note that some regions of the intestinal wall contained villi with the destroyed tops, while the lower portions of villi were well epithelialized, indicating the rapid regeneration (Figure 4).

Strong HSP90α staining was primarily observed at the top of villi. However, some villi were either not or weakly immunostained. In some regions, the moderate HSP90α expression was revealed.

DISCUSSION

Nanotechnology has already shown its significant potential in the field of medicine. Biomedical application of nanoparticles seems to be promising therapeutic agents due to their relatively small size and unique characteristics (23, 24). Nevertheless, the possibility of administering nanoparticles as drugs raises concerns regarding their adverse effects and probable toxicity. Thus, we evaluated safety and oral exposure risks of VNPs. Our findings indicate that the oral consumption of VNPs during two weeks is not associated with the statistically significant changes in the content of circulating inflammatory markers such as IL-1β, seromucoid, and C-reactive proteins. Biochemical data are supported by the results of morphological studies. No morphological signs of intestinal inflammation were found in animals exposed to VNPs. Furthermore, the development of intoxication in response to VNPs oral consumption was not found, evidenced by the absence of middle molecules elevation in blood serum.

We also assessed expression of HSP90α, which is a molecular chaperone involved in the regulation of cellular proteostasis promoting protein folding and refolding in response to stress factors (25). It is worth mentioning that HSP90α is an isofrom of the chaperone upregulated in stress conditions, while its β form is expressed constitutively (26). It has been reported that HSP90α is upregulated during inflammation (including the intestinal one) and in response to oxidative stress (27). No changes in its expression confirm the data of biochemical studies and indicate the absence of inflammation in the intestine after the oral consumption of VNPs.

Our biochemical and histological findings suggest that VNPs have no toxic effects when exposed orally at a dose of 20 μg/kg of weight during two weeks. Based on our findings, VNPs cannot be considered pro-inflammatory agents. Such conclusion is consistent with data of studies focused on elucidation of VNP properties and biological effects (28–31).

The next task of our research was to assess the therapeutic potential of VNPs in intestinal inflammation caused by oral consumption of a carrageenan-containing solution. Carrageenans are sulfated hydrocolloids of polysaccharide nature extracted from microalgae and used in food industry as thickeners, stabilizers, and emulsifiers (32). In addition, this food additive can trigger the development of intestinal inflammation as a result of its oral consumption (17–20). The development of inflammation in the rats from group A was confirmed in this study histologically and biochemically. Changes in the blood serum cytokine profile observed in our study indicated the active inflammatory process in the intestine. We believe that elevation of circulating pro-inflammatory TNF-α and IL-1β is mediated, at least partially by ROS, whose overexpression is known to be stimulated by carrageenan (33). In our previous study, we linked HSP90α intestinal overexpression revealed in this study with the development of oxidative stress in carrageenan-induced enteritis as well (17). This overexpression seems to be protective and aim at providing re-folding of damaged protein to promote survival of enterocytes.
VNP s did not stimulate the synthesis of anti-inflammatory IL-10 and even worsened the imbalance between circulating pro-inflammatory and anti-inflammatory cytokines, albeit the difference was statistically insignificant. Thus, we believe that VNP s at the dose used in our study does not affect the course of inflammation. It is worth noting that their oral consumption does not lead to the intensification of inflammatory response. Furthermore, the strongest HSP90αa immunostaining in animals from group B is observed at the top of intestinal villi and seem to be compensatory. However, this was not sufficient to provide the cell survival and resulted in the reduced viability of cells and activation of cell death. In Figure 4 (D) we can notice such damaged villi alienated from the mucosa in the lumen of small intestine with strong HSP90αa expression. In response to cell death, the regeneration should be activated. And we have managed to find the areas of extensive regeneration of enterocytes at the bottom of villi. We believe that such regeneration may be protective and can be associated with the action of VNPs. Such regions with so intense regeneration were not found in non-treated rats.

CONCLUSION

Oral exposure to VNPs at a dose of 20 μg/kg of weight by rats during two weeks showed no adverse effects. VNPs neither affect the level of circulating inflammatory markers nor influence the small intestinal morphology. Furthermore, their oral intake was not associated with over-expression of ROS-inducible chaperone HSP90α in the intestinal mucosa. Evaluation of VNP therapeutic potential using an experimental model of carrageenan-induced enteritis demonstrated no significant effects on the course of inflammation. However, HSP90αa overexpression in rats with carrageenan-induced intestinal inflammation treated with VNPs prevailed at the top of villi in a combination with the active proliferation at the bottom.

FUNDING

The study was not funded in any way.

CONFLICT OF INTEREST

The authors have no conflict of interest to disclose.

REFERENCES