S100A4 Protein in Inflammatory Bowel Disease: Results of a Single Centre Prospective Study

Paula Morávková1,*, Darina Kohoutová1, Jaroslava Vávrová2, Jan Bureš3

ABSTRACT
Introduction: The aim of our study was to assess association of serum S100A4 protein with ulcerative colitis (UC) and Crohn’s disease (CD).
Methods: Study included 118 subjects: 93 patients with CD, 16 with UC and 9 controls. In CD group, 20/93 patients had B1 phenotype, 19/93 B2, 20/93 B3 and 34/93 B2 + B3. L1 involvement was present in 15/93, L2 in 14/93 and L3 in 64/93 patients. Serum S100A4 concentration was investigated in peripheral venous blood samples by means of ELISA.
Results: Serum S100A4 was significantly higher in UC (158.6 ± 56.2 ng/mL), p = 0.019 and in CD (154.4 ± 52.1 ng/mL), p = 0.007 compared to controls (104.8 ± 40.5 ng/mL). No difference in S100A4 was revealed between UC and CD, p > 0.05. Serum S100A4 in each CD subgroup (according to behaviour) was significantly higher compared to controls, p < 0.05. Serum S100A4 was significantly higher in L2 (144.6 ± 44.2 ng/mL), p = 0.041 and in L3 (163.0 ± 52.8 ng/mL), p = 0.002 compared to controls and in L3 compared to L1 (126.9 ± 47.6 ng/mL), p = 0.017.
Conclusion: Association of serum S100A4 protein with UC and CD was confirmed. In CD, disease behaviour did not influence serum concentration of S100A4 protein. In CD, higher levels of serum S100A4 were observed in patients with ileo-colonic and colonic involvement compared to those with isolated small bowel involvement.

KEYWORDS
S100A4 protein; inflammatory bowel disease; ulcerative colitis; Crohn’s disease

AUTHOR AFFILIATIONS
1 Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine – Gastroenterology, Hradec Králové, Czech Republic
2 Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Hradec Králové, Czech Republic
* Corresponding author: Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine – Gastroenterology, Sokolská 581, Hradec Králové, 500 05 Czech Republic; e-mail: paula.moravkova@fnhk.cz

Received: 19 September 2017
Accepted: 21 October 2017
Published online: 5 February 2018

Acta Medica (Hradec Králové) 2017; 60(3): 108–113
https://doi.org/10.14712/18059694.2018.2
© 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
INTRODUCTION

Inflammatory bowel disease (IBD), ulcerative colitis (UC) and Crohn’s disease (CD) have become a global disease. Molodecky et al. reported in their recent study, that incidence and prevalence of IBD have been increasing worldwide. The highest prevalence of IBD has been documented in Europe and Canada (1).

Despite all the progress in contemporary diagnostics in medicine, there is no serum marker, which would be specific for IBD. Serum markers of inflammation – decreased thrombocyte volume and/or elevated thrombocyte count, white blood cell count, erythrocyte sedimentation rate and C-reactive protein – help to assess activity of IBD, mainly (2–7). Whichever antibody or combination of antibodies associated with IBD, including serum ASCA (anti-Saccharomyces cerevisiae antibodies), ABBA (anti-brush border antibodies), anti-I2 (antibodies to DNA fragments of Pseudomonas fluorescens), Anti-CBir1 (antibodies to CBir1 flagellin), anti–GP2 (antibodies to glycoprotein 2), anti-OmpC (anti-outer membrane protein C antibodies), pANCA (perinuclear anti-neutrophil cytoplasmic antibody), different levels of serum IgG1 and IgG2, ALCA (anti-laminaribioside carbohydrate antibodies), ACCA (anti-chitobioside carbohydrate antibodies) are present (8–15), their role to establish the definitive diagnosis of IBD/UC/CD is still supportive only.

The family of S100 proteins represents a total of at least 25 small calcium binding proteins. S100 proteins have a broad range of functions – they play an important role in the regulation of cell proliferation, differentiation, apoptosis, energy metabolism, cellular signalling, and calcium homeostasis (16). Involvement of S100 proteins in the pathogenesis of IBD has been clearly documented and the role of individual S100 proteins as biomarkers for CD and UC has been validated in multiple studies (17–23).

Calprotectin, a heterocomplex of S100A8/9 proteins, plays an important role in the regulation of different inflammatory processes and nowadays, faecal calprotectin is used for assessment of IBD activity on routine basis (17, 24).

S100A4 (metastasin-1, calvasculin) is localized in the nucleus, cytoplasm, and extracellular space. It is strongly associated with metastatic tumour progression (25).

Boye et al. emphasized that the nuclear expression (not the cytoplasmic one) of S100A4 is a novel prognostic marker for colorectal cancer (26) and further studies showed that S100A4 is not a biomarker only, but mediates the metastatic process itself, too (27).

Recent research has revealed that the role of S100A4 is more complex, including profibrotic effect e.g. in the myocardium, liver and intestine (28–30). Significant upregulation of S100A4 was observed in certain chronic inflammatory conditions, especially in patients with rheumatoid arthritis. It was shown, that increased secretion of TNF-α, IL-1β and IL-6 was mediated by S100A4 (31). The studies have demonstrated, that Toll-like receptor 4 (TLR-4), which plays a significant role in IBD, was involved in these pro-inflammatory S100A4 mediated processes (32, 33).

Fibroblasts represent the key cell type in the pathogenesis of fibrostenosing/stricturing CD. Cunningham et al. investigated S100A4 in ex-vivo culture of resected ileum in patients suffering from fibrostenosing CD. The explant culture of tissue originating from the stricture showed a significant overexpression of S100A4 (30).

We are fully aware, that faecal biomarkers, including calprotectin and S100A12, might have advantage over the serum biomarkers for their anticipated higher sensitivity (being produced by the inflamed mucosa into the intestinal lumen) and higher specificity (as serum biomarkers can be elevated due to non-gastrointestinal disorders) (17). Nevertheless, not a very rare preference of serum sampling to the faecal one by patients with IBD provoked us to investigate S100A4 protein in the serum.

To our best knowledge, there are no studies on S100A4 in different clinical IBD phenotypes in the literature.

The aim of our prospective study was to investigate serum S100A4 protein in patients with IBD and to determine possible association of increased serum S100A4 with complicated forms of CD.

METHODS

SUBJECTS

A total of 118 subjects were enrolled in the prospective study between 2009 and 2016: 93 patients with CD (44 men, 49 women, aged 22–79, mean 44 ± 14), 16 patients with UC (8 men, 8 women, aged 20–74, mean 39 ± 15) and 9 healthy controls (2 men, 7 women, aged 23–74, mean 52 ± 17). Control group consisted of individuals with normal findings on colonoscopy, who had negative history of IBD and/or colorectal neoplasia. A recent change in bowel habit and symptoms compatible with irritable bowel syndrome were the indications for colonoscopy in that individuals. No patient in control group had any serious comorbidities in relation to the serum S100A4 protein (including rheumatic disorders).

CD group was divided according to the Montreal classification (34) and descriptive statistics is provided in Table 1.

The duration of UC was 3–18 years, mean 10 ± 4, the duration of CD was 1–39 years, mean 15 ± 9. At the time of sampling, three patients with CD were without any treatment, 46 patients were on 5-aminosalicylates (5-ASA) and 44 were treated with immunosuppressive therapy (corticosteroids, azathioprine, anti-TNF, cyclosporine). A total of 18% (17/93) were treated with anti-TNF agents, 4/17 with adalimumab and 13/17 with infliximab. A total of six CD patients were treated with antibiotics (ciprofloxacin and/or metronidazole) including one patient in group with 5-ASA and five CD patients with concomitant immunosuppressive therapy.

Within the UC group, all of the enrolled patients had 5-ASA; 3 patients were also treated with azathioprine. No patient from UC group received anti-TNF therapy.

SERUM CONCENTRATION OF S100A4 PROTEIN: SAMPLE COLLECTION AND MEASUREMENT

Venous blood samples (total amount of 6 mL) were obtained before a standard colonoscopy at the Endoscopy...
Unit, 2nd Department of Internal Medicine-Gastroenterology. Samples were transferred immediately to the Institute of Clinical Biochemistry and Diagnostics at University Hospital Hradec Králové. Blood centrifugation followed and sera had been stored at −80 °C until the investigation was performed in December 2016. Serum concentration of S100A4 protein was investigated by means of Human Protein S100-A4 ELISA kit, the quantitative sandwich enzyme immunoassay technique (purchased from MyBio Source, San Diego, California, USA).

ETHICAL ISSUES
All subjects included in the study were given the necessary information and provided informed consent via a signed form. The project was approved by the Joint Ethical Committee (Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové). For all obtained data, all personal identification information was removed in compliance with the Czech laws for protection of confidentiality.

STATISTICAL ANALYSIS
Obtained data were tested statistically by means of descriptive statistic and non-paired t-test (normal distribution of data was confirmed) using STATISTICA software, version 13, 2013, Tulsa, OK, USA.

RESULTS
Serum S100A4 values were significantly higher in UC compared to controls, p = 0.019. Serum S100A4 were significantly higher in CD compared to controls, p = 0.007. No difference in S100A4 serum levels was revealed between UC and CD group, p = 0.771. See Graph 1.

In CD group, serum S100A4 was significantly higher in patients with all CD phenotypes compared to controls, p < 0.05. No difference in S100A4 was documented between particular subgroups of CD (divided according to the disease behaviour), p > 0.05. See Graph 2.

According to disease localisation in CD group, a statistically significant difference in S100A4 was revealed

Tab. 1: The main characteristics of CD group.

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Subjects Number, (%)</th>
<th>Men/Women</th>
<th>Age Range</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>20/93 (22%)</td>
<td>4/16</td>
<td>22–64</td>
<td>40 ± 14</td>
</tr>
<tr>
<td>B2</td>
<td>19/93 (20%)</td>
<td>11/8</td>
<td>23–79</td>
<td>48 ± 15</td>
</tr>
<tr>
<td>B3</td>
<td>20/93 (21%)</td>
<td>13/7</td>
<td>24–59</td>
<td>39 ± 12</td>
</tr>
<tr>
<td>B2 + B3</td>
<td>34/93 (37%)</td>
<td>16/18</td>
<td>24–78</td>
<td>47 ± 14</td>
</tr>
<tr>
<td>perianal</td>
<td>27/93 (29%)</td>
<td>13/14</td>
<td>24–69</td>
<td>43 ± 14</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>15/93 (16%)</td>
<td>9/6</td>
<td>22–63</td>
<td>41 ± 13</td>
</tr>
<tr>
<td>L2</td>
<td>14/93 (15%)</td>
<td>4/10</td>
<td>22–64</td>
<td>45 ± 12</td>
</tr>
<tr>
<td>L3</td>
<td>64/93 (69%)</td>
<td>31/33</td>
<td>22–79</td>
<td>44 ± 15</td>
</tr>
</tbody>
</table>

Graph 1: Comparison of serum concentration of S100A4 protein in controls, UC and CD patients.
1: significant difference compared to controls, p < 0.05.

Graph 2: Comparison of serum concentrations of S100A4 protein in CD subgroups (divided according to the disease behaviour).
B1 = nonstricturing-nonpenetrating, B2 = stricturing, B3 = penetrating, B2 + B3 = stricturing and penetrating form of CD.
1: significant difference compared to controls, p < 0.05.
In our study, serum S100A4 levels were significantly elevated in patients with ulcerative colitis and in patients with Crohn’s disease compared to controls. We are convinced, that S100A4 is not a biomarker of IBD only, but it also plays a crucial role in the development of inflammatory processes. We found the presence of highest S100A4 levels in patients with ileo-colonic and colonic forms of CD, compared to those with a non-stricturing phenotype of CD. The high levels of S100A4 were associated with a poor clinical response to infliximab and a high rate of anti-infliximab antibodies (35).

DISCUSSION

Role of S100A4 in fibrotic processes has been investigated recently: Tamaki et al. studied effect of S100A4 on cardiac fibrosis and documented, that S100A4 knockout mice showed reduced interstitial fibrosis, decreased number of myofibroblasts, suppressed expressions of collagen and profibrotic cytokines in the left ventricle. The authors assume, that the S100A4 induces cardiac fibrosis through the modulation of p53 (28). Effect of S100A4 in the ischemic myocardium seems to be different – protective and regenerative mainly: calvasculin decreased apoptosis of cardiac myocytes via the AKT signalling pathway (41) or via the ERK pathway (42). We found the presence of highest S100A4 levels in patients with ileo-colonic and colonic forms of CD very interesting. Based on the literature, there is no definitive...
explanation for this. Nevertheless, (1) reported activation of NF-κB signalling cascade by S100A4 (31), (2) suggestion that the NF-κB signalling cascade may be the central mediator of gastrointestinal inflammation in IBD and malignancies (40), (3) known properties of metastatin – being a mediator of metastatic processes (27), (4) and known association of colorectal carcinoma with IBD (43) are compatible with our observation of higher levels of serum S100A4 in IBD patients with colonic involvement. We are aware of the possible limits of our current study. On the basis of the available literature, where S100A4 was investigated either in the serum (51 studies; two of them in a relation to a gastroenterology disorder – liver fibrosis and cirrhosis (44, 45)) or in plasma samples (26 studies; two of them were accomplished in gastric and colorectal cancer (46, 47)), we decided to investigate serum S100A4. All individuals enrolled into our study including all healthy controls and all IBD patients were investigated in the same manner. Therefore we assume, that our results are valuable and plausible despite we do not have any comparison between plasma and serum concentrations in our patients. Further, we did not investigate mRNA for S100A4 tissue expression (from the affected areas), therefore it was not possible to correlate it with the serum S100A4. The reasons why we did not investigate the tissue samples were two: a) middle part of the small intestine may not be easily accessible for a routine endoscopy, b) resected specimens might not reflect situation in the whole intestine. We hypothesize, that serum S100A4 can help to distinguish between IBD and non-IBD population and it possibly might serve as a phenotype marker of IBD (colonic involvement), however further studies are needed to follow in the near future.

CONCLUSIONS

Association of serum S100A4 with inflammatory bowel disease was confirmed. No difference in serum S100A4 was observed between particular phenotypes of Crohn’s disease (CD) including strictureing and non-stricturing forms of CD. In CD, serum S100A4 was higher in patients with colonic and ileo-colonic involvement compared to patients with isolated small bowel involvement.

ACKNOWLEDGEMENTS

The study was supported by the Project PROGRES from Charles University (Q40-15) and by Specific University Research Programme (SVV 260396). Faculty of Medicine in Hradec Králové.

REFERENCES

24. Korndörfer IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates a mediator of metastatic processes (27), (4) and known association of colorectal carcinoma with IBD (43) are compatible with our observation of higher levels of serum S100A4 in IBD patients with colonic involvement.
29. Louka ML, Ramay MM. Involvement of fibroblast-specific protein 1 (S100A4) and matrix metalloproteinase-13 (MMP-13) in CCL4-induced reversible liver fibrosis. Gene 2016; 579(1): 29–33.