
Pro-inflammatory activation of endothelial cells
and its counter-regulation

In the setting of infection or wound healing, a tightly
controlled pro-inflammatory and pro-thrombotic conver-
sion of the endothelial phenotype is a beneficial biological
response which helps to combat infection and renew organ
integrity. However, prolonged endothelial activation, which
has escaped control mechanisms of the host, may set off
unfavorable sequelae, such as atherosclerosis and intravas-
cular thrombosis (13).

Factors responsible for endothelial homeostasis involve
both biochemical and biomechanical stimuli. The former
include inflammatory cytokines, namely tumor necrosis
factor-α (TNFα) and interleukin-1β (IL-1β), both of them
known also as “proximal” cytokines which, in their turn,
induce endothelial expression of adhesion molecules (e.g.,
E-selectin, vascular cell adhesion molecule-1 or VCAM-1,
intercellular adhesion molecule-1 or ICAM-1) and pro-coa-
gulant factors, most importantly tissue factor (TF). The net
result is known as endothelial dysfunction (12, 18).

The central mediator which converges most inflamma-
tory stimuli is the transcription factor nuclear factor κB
(NF-κB). Its activation leads to the disruption of the non-
inflammatory, non-thrombogenic vascular lining, which is
transformed into a pro-inflammatory, pro-thrombotic en-
dothelial surface (16). On the other hand, biomechanical
factors, namely laminar shear stress (LSS), induce the ex-
pression of various protective factors, the most prominent

ones being endothelial NOS (eNOS) and thrombomodulin
(TM). Both of them are essential for regulation of vascular
tone and maintenance of the quiescent state of endothelial
cells (4, 25). In those areas of the vasculature where lami-
nar shear stress does not fit in with its physiological range,
expression of NF-κB is substantially enhanced (10).
Consequently, these vascular segments are prone to the de-
velopment of atherosclerosis. For example, branch points
of the vascular tree are exposed to chaotic blood flow
patterns, which are entirely distinct from regular laminar
shear stress. Therefore, these branch points are highly sus-
ceptible to the formation of atherosclerotic lesions (19).

Krüppel-like factors: a family of transcription 
proteins with diverse functions

Krüppel-like factors (KLFs) are a subclass of the zinc-
finger family of transcription factors. They are characte-
rized by the DNA binding domain, which contains
a conserved sequence CX2CX3FX5LX2HX3H. The zinc
fingers are usually found at the C-terminus of the protein
and bind to the consensus sequence 5’-CNCCC-3’ of the
target protein. The N-terminus is involved in transcriptional
activation and repression (see Tab. 2) (3).

Many studies demonstrated that KLF proteins regulate
critical aspects of cellular differentiation and tissue develop-
ment. Original designation of individual KLFs reflected the
tissue in which they were found most abundantly and in
which they were supposed to exert their respective functions.

135

REVIEW ARTICLE

OCCURRENCE AND SIGNIFICANCE OF THE NUCLEAR TRANSCRIPTION
FACTOR KRÜPPEL-LIKE FACTOR 4 (KLF4) IN THE VESSEL WALL

Pavel Kuneš1, Zdeňka Holubcová1, Jan Krejsek2

Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Czech Republic: Department
of Cardiac Surgery1, Institute of Clinical Immunology and Allergology2

Summary: Practically all mammalian cells including human can switch, according to micro- or macroenvironmental con-
ditions, from states of cellular quiescence to inflammatory activation and vice versa. Along with recent knowledge, cellu-
lar quiescence is not a passive, but a highly active state with broad engagement of the cell synthetic and secretory
machinery. Inflammatory activation is a beneficial process in cases of infection; however, if its control fails, it may degra-
de into autoimmune diseases or cancer growth. Control over cellular quiescence is exerted predominantly by a set of zinc-
finger transcription proteins, referred to as Krüppel-like factors (KLFs). This review article offers recent information
concerning activities of Krüppel-like factor 4 in the vascular wall.

Key words: Endothelial phenotype; Inflammatory cytokines; Shear stress; Transcription factors; Arterial injury; Smooth muscle
cells

ACTA MEDICA (Hradec Králové) 2009;52(4):135–139



KLF1, also known under its older term EKLF or eryth-
roid Krüppel-like factor, has been proved to be indispens-
able for red blood cell maturation (8).

By contrast, targeted disruption in mice of KLF2 revealed
its essential role in programming quiescent phenotype of sing-
le-positive T cells and in normal development of the lungs.
Hence its alternative denomination of LKLF or lung Krüppel-
like factor (29). Nowadays, KLF2 stands out as a transcrip-
tion factor which maintains quiescent phenotype of human
vascular endothelium (6). Beyond doubt, KLF2 is one of
the most important endogenous atheroprotective factors
(7). Exogenously, KLF2 has been found to be up-regulated
by statin treatment (26). Endogenously, beneficial activiti-
es of KLF2 are started off by elevated levels of laminar she-
ar stress, such as are attained by physical exercise (27).

KLF4, also termed GKLF or gut-enriched Krüppel-like
factor, was initially considered an epithelial-specific trans-
cription factor which participated in the differentiation and
growth of the epithelium, namely in the gut and in the skin.
KLF4 is highly expressed in terminally differentiated,
post-mitotic epithelial cells of the intestinal tract (24). Ex-
pression of KLF4 inhibits DNA synthesis and reduces cel-
lular growth in colon cancer cells. Unfortunately, KLF4
expression is significantly decreased in multiple human
cancers, including colon cancer and gastric cancer (14). By
contrast, elevated KLF4 levels have been reported in mam-
mary carcinoma (20). KLF4 displays a potential to switch
from a growth-inhibiting tumor suppressor to a growth-pro-
moting oncogene in response to changes in the cellular con-
text (31). In this respect, its activities are reminiscent of
those found in human vascular endothelium.

Recent studies have added an interesting piece of know-
ledge that KLF4 regulates pluripotent stem cell development
(23). Most importantly, it has been confirmed that endotheli-
al cells also express KLF4 and that endothelial KLF4 is also
induced by laminar shear stress. Thus, in the vascular endo-
thelium, KLF4 strongly resembles KLF2, since both KLFs
are structurally interrelated and both hold under control cri-
tical steps responsible for endothelial cell inflammatory and
thrombotic activation (11). Expression and functions of
both KLF transcription factors are summarized in Tab. 1.

KLF4 activities in the vascular endothelium

Histologically, KLF4 is expressed by endothelial cells of
small, medium, and large vessels, respectively, both arteries
and veins, as well as by endocardial endothelium.

Just the same as KLF2, endothelial KLF4 is regulated
by biomechanical forces and inflammatory cytokines. In
human coronary arteries, KLF4 has been found to be in-
duced by levels of laminar shear stress in the range of 12 to
20 dynes/cm2, whereas in postcapillar venules by those of 2
dynes/cm2.

KLF4 reduces secretion of various inflammatory me-
diators from endothelial cells. Experimental depletion of
endothelial KLF4 produces an unopposed pro-inflamma-
tory effect, which is manifest by decreased expression of
eNOS, thrombomodulin, tissue plasminogen activator (tPA),
and, consequently, by a prevailing impact of pro-inflamma-
tory cytokines on the endothelium.

In such a condition, widespread elaboration of pro-in-
flammatory and pro-coagulant substances, namely TNFα,
IL-Iβ, interferon-γ, thrombin, respectively, releases subse-
quent production of adhesion molecules, tissue factor (TF),
and plasminogen activator inhibitor-1 (PAI-1), all of which
corroborate the inflammatory and pro-coagulant pheno-
type of the endothelial cells.

In this stage of events, a counter-regulatory production
of endothelial KLF4 sets in in vivo. KLF4 induced by an in-
flammatory micro-environment confers an anti-inflamma-
tory expression pattern to endothelial cells. The ensuing
endothelial phenotype results from the balance between in-
flammatory mediators and KLF4 expression, respectively,
with the latter having the capacity to prevail over the for-
mer. This is in marked contrast to Krüppel-like factor 2,
which is down-regulated by pro-inflammatory stimuli (2).

There is both a basal and a cytokine-induced expression
of KLF4 in the endothelium. Under basal conditions, KLF4
induces eNOS and TM, and inhibits PAI-1.

Under the influence of pro-inflammatory cytokines,
KLF4 inhibits the expression of a diverse set of pro-in-
flammatory factors, including monocyte chemoattractant
protein-1, RANTES, C-reactive protein, PAI-1, IL-6, tissue
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monocyte T-cells endothelial cell
chemokines reduced transition from naive inflammation

⇓ MIP-1 to memory phenotype ⇓ VCAM-1, E-selectin
⇓ MCP-1 ⇑ eNOS

⇓ IL-8
proinflammatory cytokines coagulation

⇓ TNFα ⇓ PAI-1, TF
⇓ IL-1β ⇑ eNOS, tPA

costimulatory interactions
⇓ CD40L angiogenesis

proinflammatory mediators ⇓ E-selectin
⇓ COX-2

Tab. 1: Krüppel-like factors 2 and 4 regulation of gene expression in cells implicated in protective processes in atherosc-
lerosis. For differences between the two see the text.



inhibitors of metalloproteinases 1 and 2, to name only
some. Thus, KLF4 reduces in the vascular endothelium the
deleterious effects of pro-inflammatory cytokines (21).

KLF4 and its target genes

Due to its capacity of a nuclear transcription factor,
KLF4-inherent effects reside in the control of the promoter
function of its target genes. KLF4 fine-tunes finite expres-
sion of its underlying genes, both activation and repression,
via finally tailoring transcription of the genetic information.
KLF4 transactivates the eNOS and TM promoters, the pro-
duction of both proteins being significantly enhanced. By
contrast, KLF4 down-modulates cytokine induction of the
TF promoter. Furthermore, KLF4 inhibits p65-mediated in-
duction of NF-κB. In particular, the synthesis of VCAM-1
and TF is dependent on NF-κB activity after the exposure
of endothelial cells to diverse pro-inflammatory mediators.
Taken together, KLF4 sets up an anti-inflammatory, anti-
coagulant milieu in endothelial cells (37). Adherence of
leukocytes to TNFα-activated endothelium is profoundly
inhibited. The ability of KLF4 to up-regulate thrombomo-
dulin expression, even under inflammatory conditions, sug-
gests that it supports blood fluidity which, in turn, acts to
decrease leukocyte adhesion to endothelial surface. Addi-
tionally, KLF4 prolongs blood clotting time despite the pre-
sence of TNF. Thus, KLF4 decreases the formation of
microthrombi within the vascular lumen (32).

KLF4 also increases the secretion of the tissue inhibi-
tors of metalloproteinases 1 and 2. Metalloproteinase acti-
vity has been implicated in the formation of aortic
aneurysms. It may be that endothelial KLF4 is endowed
with beneficial effects that far exceed the vessel lumen (28).

Comparison of KLF4 and KLF2 in the vessel wall

As has been said repeatedly, both KLF4 and KLF2 are
induced by laminar shear stress. By sharp contrast to
KLF4, KLF2 expression is inhibited by inflammatory cyto-
kines. Under basal conditions, endothelial KLF2 tran-
scripts are present in about a 5–10-fold excess compared with
KLF4. In the „plateau“ phase after treatment with TNF,
KLF4 and KLF2 transcripts are present in approximately
equal numbers. Laminar shear stress significantly induces
both KLF4 and KLF2, with -fold induction of KLF4 being
somewhat greater with both venous and arterial shear con-
ditions. KLF4 and KLF2 have indisputably closely overlap-
ping functions. It is therefore tempting to hypothetize that
this overlap has been conserved during evolution in order
to maintain sufficient levels of anti-inflammatory proteins
both under basal and inflammatory conditions (9).

Smooth muscle cells in injured arterial wall

Smooth muscle cells (SMCs) of the arterial wall are
another cell population that is implicated in the develop-

ment of atherosclerosis according to the “response-to-in-
jury” hypothesis. In normal mature blood vessels, SMCs
are mostly differentiated cells which express smooth musc-
le (SM)-specific contractile proteins α-SM actin (α-SMA)
and SM22α.

In mature arterial walls, SMCs exhibit also an extreme-
ly low rate of proliferation.

In response to vascular injury, such as blood flow per-
turbations, manual handling of the vessels during coronary
artery bypass grafting (CABG) procedures, and develop-
ment of restenosis after angioplasty, SMCs down-regulate
their contractile proteins (α-SMA and SM22α) and revert
to a dedifferentiated phenotype, in which the expression of
an embryonic type MHC (SMemb/NMHC) gene, a dedif-
ferentiated marker gene, is up-regulated. SMCs in injured
vessels also increase their rates of proliferation, migration,
and synthesis of extracellular matrix proteins, leading to ne-
ointima formation (15).

Impact of KLF4 on injured smooth muscle cells

Basal expression of KLF4 is low in vascular SMCs and
does not seem to exert any significant function. Following
injury, KLF4 expression is set off by platelet-derived growth
factor β (PDGFβ) and oxidized phospholipids (5, 36).
KLF4 binds to a DNA sequence that has either a CACCC
homology or is rich in GC content. Biological effects of
KLF4 on cellular proliferation and differentiation can be
recognized as a SMCs growth repressor and a SMCs diffe-
rentiation repressor (22).

Owing to KLF4 activity, expression of both SM α-actin
and SM22α is markedly decreased in the medial layer of
injured arteries. The promoter/enhancer regions of these
differentiation markers contain common cis elements, in-
cluding multiple CC(A/T-rich)6GG elements, and a trans-
forming growth factor- (TGF-β) control element (17).

KLF4 binds to the TGF-β control element-containing
promoter regions of the SM α-actin gene, and the SM22α
gene.

In the medial layer of injured arteries, KLF4 positively
regulates SM22α and α-SMA (the differentiation markers)
and negatively regulates SMemb/NMHC (the dedifferen-
tiation marker) (1). KLF4-induced growth suppression of
SMCs, the hallmark of neointima formation, is caused by
cell cycle arrest at the G1/S boundary (34). Inhibition of
SMCs proliferation in the injured arteries is the result of
KLF4-induced activation of the nuclear transcription pro-
tein p53 (35). Consequent to DNA damage, KLF4 is con-
tributes substantially to mediating the p53-induced G1/S
cell cycle arrest. Therefore, p53 stands out as an essential
mediator of KLF4-activated differentiation, and KLF4-inhi-
bited proliferation processes (30).

Moreover, it has been convincingly shown that in some
cell lines, p53 is able to suppress the expression of matrix
metalloproteinase-9 (MMP-9), collagenase-1 (MMP-1), and
collagenase-3 (MMP-13). Since the promoter regions of
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MMP-9 and MMP-2 include some putative KLF4-binding
sites, these genes might also be target genes of KLF4 (33).
Regulatory roles of KLFs are summarized in Tab. 2.

Concluding remarks

The presence of Krüppel-like factor 4 in the arterial
wall, both intima (endothelial cells) and media (smooth
muscle cells) layers, has been recognized only after the pre-
sence of KLF2 in human vasculature. Both transcription
factors are active in maintaining the quiescent phenotype of
the vessel wall, with KLF4 seemingly predominating over
KLF2 due to the former’s capacity to be expressed even in
overt inflammatory conditions. However, both KLFs are
closely interrelated both structurally and functionally. It
may well be that other, as yet unknown mediators are ope-
rative in maintaining cellular quiescence. Further studies
are needed to clarify this field of cellular biology in order to
develop more effective treatment modalities to combat po-
tentially malignant diseases, such as atherosclerosis, auto-
immune disorders or cancer.
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