
Introduction

Antimicrobials have a long heritage of usage for pre-
vention of oral diseases (75). One of the ardent proponents
of antiseptics has been W. D. Miller. He advocated the use
of antiseptics for preventing caries as he had recognised the
infectious character of tooth decay (79). In the subsequent
years, following various research findings on the microbial
etiology of oral diseases, there was a renewed interest in an-
timicrobial agents (6). The normal oral microflora compri-
ses numerous bacterial species. However, the root canal
environment is highly selective due to the limited availabi-
lity of nutrients, complex bacterial interactions, and diffe-
rences in oxygen potential in root canals with necrotic pulp.
Hence the number of bacterial species which can survive in
this harsh environment is comparatively less than that
found in the oral cavity. The majority of the root canal
microbiota therefore comprises facultative and strict ana-
erobic microorganisms which cause infections that sti-
mulate periapical bone resorption, and are recalcitrant to
endodontic treatment (104). Acute periradicular inflamma-
tion is mainly caused by anaerobes, especially black-pig-
mented Gram negative anaerobes (88, 121, 138). The absence

of bacteria during root canal filling enhances the endodon-
tic prognosis (45, 46).

Root canal debridement and antimicrobial irrigation re-
duce the endodontic microbial load (15). Saline reduces
the bacterial count during the manual instrumentation of
canals. However, it does not result in negative cultures in
a single visit (15), thereby emphasizing the significance of
an antibacterial agent.

Definition

Antimicrobial agents may be disinfectants and antisep-
tics that destroy or inhibit the growth of microorganisms
and thereby prevent infection by pathogenic or potentially
pathogenic microorganisms. Disinfectants are used on ina-
nimate objects or surfaces, whilst antiseptics are used on li-
ving tissues (10, 78).

Classification

Antimicrobial agents can be broadly classified into two
groups: conventional antiseptics and chemotherapeutics
(56).
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Conventional antiseptics Chemotherapeutics
1. Alcohols – Ethyl alcohol, Isopropylalcohol Antibiotics
2. Phenolic Compounds – Camphorated phenol, Monochlorophenol, Thymol, Cresol, Creosote
3. Heavy Metal Salts
4. Cationic Detergents – Quarternary ammonium compounds
5. Halogens – Hypochlorite, Chloramine T, Iodine, Iodophores

Adapted from Ingle JI, Bakland LK, 1994

Tab. 1: Classification of antimicrobial agents.



General mechanism of action 
of antimicrobial agents

The mechanism of action of antimicrobial agents is va-
ried as they have multiple sites of action except for antibio-
tics, which have very specific sites of action. The nature of
the organism, antimicrobial agent and the concentration
determine the response of the microorganisms to the anti-
microbials. Furthermore, with the involvement of multiple
cell structures causing primary and secondary effect and
cell lysis, it is difficult to determine the precise mode of ac-
tion of these antimicrobial agents. The cell wall, cytoplas-
mic membrane and ribosomes of vegetative cells, the coat
and cortex of bacterial spores, envelope and capsid of viru-
ses and proteins (structural proteins, enzymes), nucleic
acids and polysaccharides are some of the sites of action of
antimicrobial agents. These antimicrobial actions eventual-
ly result in the loss of important cell functions like protein
synthesis and metabolism, replication, transcription and de-
struction of cell membranes with leakage of cell contents
(103).

Efficacy of antimicrobial agents

The two most important features which determine the
efficacy of antimicrobial agents are the killing and the
cleaning potential of the agent. The antimicrobial activity
may vary from inhibition of metabolism to destruction of
the microorganisms. The specific target of action of anti-
microbials is difficult to elucidate as antimicrobial agents
act on multiple cell components, resulting in both primary
and secondary effects, which in turn is hard to distinguish.
However, a combination of several techniques can help solve
this problem. For example if enzyme inactivation and/or if
damage of the cell wall, respiratory apparatus, ribonucleic
acid (RNA) or deoxyribonucleic acid (DNA) are involved,
then it implies that the antimicrobial inhibits the metabolic
activity of the microbe. Thus the target site of activity of the
antimicrobial can be elucidated.

Culture-based methods are used to measure the number
of surviving bacteria. However, viable but, non culturable,
‘‘VBNC’’(65) are not represented. Hence the numbers of
viable organisms measured by culture are less than their
true population. These methods are still useful in mea-
suring the microorganisms in the sample. These include
modified cultivation-based methods (12), application of
fluorescent dyes, analysis of respiratory activity using the
tetrazolium salt 5-cyano-2,3-ditolyl tetrazolium chloride
(CTC) (100) and staining with the fluorochromes con-
tained in the Live/Dead BacLight Bacterial Viability Kit,
which measures the metabolic activity of antimicrobial-
treated bacteria (12). Some of the other techniques are
measurement of the transmembrane potential with Rhod-
amine 123 or DiBAC4 (3), which is used to determine the
antimicrobial-treated biofilms to utilise nutritional substra-
tes (73) and indirect measurement of the metabolic activi-

ty of antimicrobial-treated bacteria by (49) using micro-
electrodes to determine the redox potential in the biofilm.
Methods like image analysis (132) are used to detect sur-
face-associated, stained bacteria, while a confocal laser
scanning microscope (CLSM) detects changes in the mor-
phology of the biofilm resulting from antimicrobial trea-
ment. Scanning electron microscopy (SEM) is often used
to analyse the surface associated biofilm before and after
antimicrobial treatment. All these techniques are of im-
mense use in determining the efficacy of the antimicrobial
agent.

Microbial Resistance

Resistance mechanisms of biofilms and planktonic cells
are dissimilar. In a study by Gilbert et al. (34), biofilms
were found to be 10 to 1000 times less susceptible than
planktonic cells to antimicrobial agents. This striking dif-
ference is due the different resistance mechanisms of
biofilms. Resistance is defined as the ability of a microor-
ganism to grow in the presence of high levels of an antimi-
crobial agent or to survive treatment with an antimicrobial
agent. Microbial resistance is mainly of two types, intrinsic
and acquired resistance. Intrinsic, or innate, resistance is
the natural chromosomally determined resistance and
physiological adaptation which is specific for a particular
microorganism. Acquired resistance refers to the resistance
resulting from mutations and the selection of resistant mu-
tants from a population exposed to antimicrobial agents, or
due to the incorporation of plasmids or transposons, which
results in resistance to antimicrobials (78, 82). It is most
likely that increased cell densities in biofilms result in the
selection of spontaneously resistant mutants when exposed
to sublethal concentrations of antimicrobials, while in-
creased cell numbers cause a horizontal transfer of genes
expressing resistance to antimicrobials (23). Various other
mechanisms which explain microbial resistance include
slow rate of growth of biofilm cells due to restricted avail-
ability of nutrients, the emergence of a biofilm-specific phe-
notype, stimulation of general stress response genes, the
occurrence of persistent cells and physical and chemical
diffusion-reaction barriers which limit occurrence the pe-
netration of antimicrobials into the biofilm (23).

Sodium hypochlorite

The antimicrobial solution that has had extensive use in
endodontics as a root canal antimicrobial is sodium hypo-
chlorite (NaOCl), in concentrations ranging from 0.5 % to
5.25 %. This is due to its antimicrobial and dissolving ef-
fects on necrotic tissues (111). There is no consensus within
the endodontic community regarding the most effective
concentration of sodium hypochlorite to be used. However,
a concentration of 2.6 % to 5.2 % has been found to have
adequate tissue solvent activity. Sodium hypochlorite is
a reducing agent with 5 % of available chlorine. It acts as
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a lubricant, antiseptic agent, bleach and also dissolves tis-
sue (39). However, the exact bactericidal mechanism rema-
ins obscure (25). It is suggested that the antibactericidal
ability of NaOCl results from the formation of hypochlo-
rous acid (HOCl) when in contact with organic debris.
HOCl exerts its effect by the oxidation of sulphydryl groups
within bacterial enzyme systems, thereby disrupting the me-
tabolism of the microorganism (111). Cvek M et al. in his
study reported that flushing with sterile saline had poor
antibacterial action (9 %) when compared to sodium hypo-
chlorite (25 %). In addition, 0.5 % or 5.0 % sodium hypo-
chlorite solutions showed similar antibacterial effects.
Inadequate mechanical cleansing of root canals in teeth
with immature roots cannot be overcome by increasing the
concentration of the solution, as it can cause tissue damage
(20). The antibacterial action of NaOCl is time dependent.
In an in vivo study, Ringel et al. noted that in root canals of
permanent teeth 2.5 % NaOCl had a more powerful anti-
bacterial effect than 2 % chlorhexidine gluconate, as NaOCl
was a powerful solvent for necrotic and organic material
(95). Naenni et al reported that only sodium hypochlorite
showed effective necrotic tissue dissolution among 10 %
chlorhexidine, 3 % and 30 % hydrogen peroxide, 10 % pera-
cetic acid, 5 % dichloroisocyanurate (NaDCC), and 10 %
citric acid. This finding assumes significance when other
substitutes are used in place of NaOCl for endodontic irri-
gation (84).

An in vivo study was done by Ercan et al on 2 % chlor-
hexidine gluconate and 5.25 % sodium hypochlorite in in-
fected root canals and he concluded that both
chlorhexidine gluconate and sodium hypochlorite prevent
microbial activity in non vital teeth with or without peri-
apical pathologies (27). The main drawback of NaOCl is
the toxicity to the periapical tissues(26, 50, 125), bad
odour, discolouration of dental equipment, and

destruction of permanent tooth follicles and oral muco-
sa. It can also cause pharyngeal oedema and oesophageal
burns when unintentionally swallowed (104), so its replace-
ment by chlorhexidine gluconate is being carefully studied
by various investigators (88).

Sodium hypochlorite is not carcinogenic in animals
(52). However it is mutagenic in Salmonella typhimurium
and not in Bacillus subtilis (52). Chromosome aberrations
are seen in Chinese hamster lung cells but not in human
fibroblasts (52). In vivo experiments on mice have shown
that sodium hypochlorite does not elicit micronuclei, ane-
uploidy, and chromosome aberrations in bone marrow cells
(57). Morphological transformation (135) and SCEs (80)
are seen in SHE cells. However, UDS (42) is absent when
sodium hypochlorite is used.

Chlorhexidine gluconate

Chlorhexidine (CHX) is widely used in periodontal and
endodontic treatment as an irrigant. There are various me-
chanisms of antimicrobial action for chlorhexidine. It at-

taches electrostatically to negatively charged sites on bacte-
ria and also to its cytoplasmic membrane. The leakage of
intracellular material is due to the loss of osmotic balance
by CHX. The binding of CHX to hydroxyapatite and soft
tissues changes their electrical field to compete with the
binding of bacteria (46).

Cetrexidin♦ (Vebas, San Giuliano, Milan, Italy) is an-
other antiseptic agent that is being evaluated. It consists of
0.2 % chlorhexidine gluconate and 0.2 % cetrimide (22,
125). Cetrimide (cetiltrimethyl ammonium bromide), is
a quarternery ammonium compound and a cationic deter-
gent that is effective against many Gram positive and Gram
negative bacteria (22).

A study on the antimicrobial effectiveness and cytotoxi-
city of 4 irrigant solutions, viz 5.25 % sodium hypochlorite
(NaOCl), 0.2 % chlorhexidine gluconate plus 0.2 % cetri-
mide (Cetrexidin®), 2 % chlorhexidine gluconate and 0.9 %
sterile saline solution demonstrated that NaOCl should re-
main in the canal for a substantial period so that it can act
upon the bacterial cells located in the irregularities within
the canal. In this study, 5 minutes following the irrigation
process, chlorhexidine gluconate had a more rapid and
stronger action on E. faecalis than NaOCl. Similar results
were also obtained by D’Arcangelo et al. (22) and Türkün
et al. (125). In the study it was seen that Cetrexidin® had
a greater antibacterial effect than 5.25 % NaOCl. A plau-
sible explanation for this seems to be that cetrimide acts
as a detergent, thereby lowering the surface tension.
Cetrimide, when combined with chlorhexidine, easily pene-
trates into the root canals and dentinal tubules. However,
no significant difference between the antibacterial effects of
Cetrexidin® and 2 % chlorhexidine gluconate was observed.
Jeansonne & White (58) found that chlorhexidine gluconate
had a residual antibacterial effect on the infected canals
and the antibacterial effect was substantive after 48 h of
chlorhexidine and Cetrexidin® application into the E. fae-
calis inoculated canals (58).

2 % chlorhexidine gluconate and Cetrexidin® had more
antibacterial effect on anaerobic bacteria than 5.25 %
NaOCl. This was due to their active cationic properties,
which enable their adsorbtion by the dentine surface and
their residual antimicrobial activity. In vivo studies have re-
ported that chlorhexidine has antibacterial activity with re-
sidual effects in the root canal for 48 h. (72). Chlorhexidine
appeared to be the most effective antibacterial substance in
comparison to hydrogen peroxide, sodium hypochlorite
and REDTA, while calcium hydroxide and saline solutions
were least effective (99).

Calcium hydroxide

Calcium hydroxide is the most commonly used inter-ap-
pointment intracanal endodontic medicament (32, 91, 110,
120). The publication of research data on the antibacterial
action of calcium hydroxide in root canal treatment by De
Moor & De Witte led to increased use of calcium hydroxide
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in endodontic treatment. Similar reports by several investi-
gators resulted in widespread use of calcium hydroxide as
an inter-appointment intracanal medicament (89, 112).

It is used as an intracanal medicament due to the healing
of periradicular tissues. However, a few reports of adverse
reactions have been found. Ca(OH)2 powder is made into
a paste with water or saline and it is used as an intracanal
dressing for a few days or weeks. The antibacterial activity
is a result of free hydroxyl radical liberation (110) and dif-
fusion of hydroxyl radicals resulting in a highly alkaline en-
vironment (pH 12.5). These hydroxyl ions penetrate the
dentinal tubules and exert their effect. These hydroxyl radi-
cals cause bacterial cell death by three possible mecha-
nisms. The first mechanism is by splitting DNA strands
and thereby preventing DNA replication and disrupting cel-
lular activity (55, 97). Another method is by lipid peroxi-
dation, which leads to the destruction of both phospholipid
and cell membrane, finally resulting in loss of unsaturated
fatty acids and massive destruction of membrane (68). The
third mechanism is by protein denaturation and damage of
cell metabolism. Calcium hydroxide also shows increased
activity against anaerobes in comparison to paramonochlo-
rophenol (32) and formocresol (120).

Resistance to Ca(OH)2 by certain microorganisms have
been reported (41, 85, 127). Nerwich et al. have shown dif-
ferential diffusion rates of hydroxyl ions in cervical and api-
cal root dentine (86). The pH of inner cervical root dentine
peaked at 10.8 within hours after calcium hydroxide inser-
tion, whilst apically a plateau pH of approximately 9.5 was
reached only 2 weeks after the dressing was in place, and
the outer root dentine pH reached a peak level of about 9.0
after 2–3 weeks.

In an extensive review of available clinical data on the ef-
ficacy of calcium hydroxide by C. Sathorn et al. was reported
that calcium hydroxide has limited value as an antibacterial
agent as evaluated by culture techniques (99). Ex vivo studi-
es by Haapasalo et al. and Portenier et al. (40, 92) report that
dentine may inactivate the antibacterial action of calcium
hydroxide. Another study by Peters et al. (91) reported that
the number of root canals positive for bacteria increased af-
ter intra canal medication with calcium hydroxide. Similar re-
ports by other researchers also stated the inability of calcium
hydroxide to effectively eradicate bacteria and the presence
of positive cultures after using calcium hydroxide in the root
canal (91, 94,128). Proton donors like H2PO4, HCO3 and
HCO found within the dentine neutralize hydroxyl ions, the-
reby preventing the attainment of optimal microbicidal pH
and compromising the antibacterial potential of calcium
hydroxide (86,129). In addition to this, necrotic tissue debris
and/or cells may possibly interfere with the action of hydro-
xyl ions within the root canal and dentinal tubules (110).

Hydrogen peroxide

Another antimicrobial agent that has had extensive use
in endodontics is hydrogen peroxide (H2O2). The mecha-

nism of action is by the reaction of superoxide ions, re-
sulting in formation of hydroxyl radicals. Hydroxyl radicals
are strong oxidants and they destroy membrane lipids,
DNA and other essential cell components. The oxidation of
sulphydryl groups and double bonds in proteins, lipids, and
surface membranes is responsible for the antimicrobial ac-
tion. In addition, the chloride in the bacteria may be oxi-
dized to hypochlorite when myeloperoxidase enzyme is
present (11).

Hydrogen peroxide is an oxidizing solution and is usu-
ally used in combination with sodium hypochlorite for root
canal irrigation. This results in two kinds of reactive oxygen
species, the superoxide anion radical (O2

-) and the hydroxyl
radical (OH-). Shiozawa A. studied the pH changes and dis-
solved oxygen values in the NaClO- H2O2 reaction mixture
and found that the pH influenced the O2

- and OH- forma-
tion, and that H2O2 resulted in O2 formation. Root canal
irrigation with NaClO and H2O2 induces both biological
and mechanical effects. The biological effect of NaClO and
H2O2 owes to tissue irritation due to the chemical reactions
of O2

- and OH-, while the mechanical effect results from O2
bubbling (109). The effervescent action resulting in the re-
lease of nascent oxygen results in the agitation of the root
canal contents and the debris is flushed out. The tissue dis-
solution and antimicrobial effect are the main mode of
action of the combined solutions (18). The final irrigation
of the canal should be done with sodium hypochlorite, as
hydrogen peroxide can form gas in the presence of necrotic
debris and blood leading to pain (39).

Concentration of H2O2 and irradiation time resulted in
variation in the generation of hydroxyl radical from H2O2
exposed to light or laser radiation. Irradiation time also
influenced the quantity of 5,5-dimethyl-1-pyrrolidone-(2)-
oxyl-(1) (DMPO-X). The amounts of hydroxyl radicals ge-
nerated from H2O2 after irradiation were highest with
a plasma lamp and lowest with a Yellow He-Ne laser. The
amounts of DMPO-X generated from NaClO after irradia-
tion was greater with a plasma lamp and least with a He-Ne
laser (64).

Formocresol

Formocresol consists of formalin and tricresol in a ratio
of 1:1. Tricresol is a combination of o-, m-, and p-cresols.
The application time and the concentration of formocresol
influence the histologic reaction of vital pulp. Formocresol
is a bactericidal agent and the mode of action is by fixation,
which results in inhibition of bacteria. Formocresol causes
zones of necrosis, fixation, and inflammation. It results in
healing with inflammation and eventual replacement with
granulation tissue, bone or osteodentin in some cases.

Smith et al. (113) and various other investigators have
stated that clot formation replaced the pulp tissue when fer-
ric sulfate was used. Inflammation and calcific changes in
the coronal as well as in the radicular portions of the pulp
were some of the other findings in their studies (113).
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Cochrane Review (83) and evidence-based assessment of
clinical trials of ferric sulphate and formocresol pulpoto-
mies with meta-analysis (31) have reported similar clinical
and radiographic success rates for both these agents.

Formaldehyde causes carcinogenesis in animals, muta-
tion in bacteria, yeasts and Drosophila melanogaster and
clastogenesis in mammalian cells and plants (51). Salmo-
nella mutagenicity tests also reveal that formalin is mutagenic
(13), while tricresol is non-mutagenic (44). Formaldehyde
and m-cresol cause morphological transformation (135)
chromosome aberrations (48), and UDS (42) in SHE cells.
Formocresol also induces morphological transformation,
UDS, and SCEs in SHE cells (122).

Formaldehyde is an ingredient in Buckley’s Formo-
cresol solution which is extensively used as a pulpotomy
agent in grossly decayed deciduous teeth. In June 2004, the
International Agency for Research on Cancer (IARC) clas-
sified formaldehyde as having carcinogenic potential in hu-
mans, as there is sufficient evidence which reveals that it
causes nasopharyngeal cancer, limited evidence for cancer
of the nasal cavity and paranasal sinuses, and ‘strong but
not sufficient evidence’ for leukaemia (57).

Ferric sulphate

Ferric sulphate (15.5 %) is commonly used as a hae-
mostatic agent in pulpotomy procedures. Landau and
Johnsen in 1988 were the first who conducted animal ex-
periments using ferric sulphate prior to the placement of
calcium hydroxide over amputated pulps in monkey teeth.
The persistence of an extrapulpal blood clot attributed to
the decreased efficiency of calcium hydroxide. They studied
the role of haemostasis by ferric sulphate and the resultant
improvement in treatment with calcium hydroxide (71).
The mode of action is by the formation of a ferric ion pro-
tein complex in the presence of blood resulting in the me-
chanical sealing of cut vessels by the membrane of this
complex. This ultimately leads to haemostasis (102). The
agglutinated protein complex forms plugs which seal the ca-
pillary orifices and inhibit clot formation (28, 70).

Several studies have been reported with the use of 15.5 %
ferric sulphate. In an experimental study, ferric sulfate,
diluted formocresol and IRM, when used on pulpotomized
primary teeth of baboons, the degree of inflammation, pe-
riradicular or interradicular abscess or inflammatory root
resorption and presence of dentinal bridge were similar.

Thus the pulpal reaction of ferric sulfate and formocre-
sol did not differ from each other (31). Similar results were
obtained for ferric sulphate and formocresol in rat teeth by
Cotes and co-workers (19). However, less than 40 % of
treated teeth presented with reparative dentine and fibrosis
with ferric sulphate. A one-year prospective human trial
(30) by Fei et al. revealed a success rate of 96 % for ferric
sulphate and 78 % for formocresol on the basis of com-
bined clinical and roentgenographic features. Investigations
by Ibricevic and Al-Jame revealed similar success rates to

that of Fuks et al. with ferric sulphate and formocresol
treated teeth at an interval of 20 months (54) and sub-
sequently at 48 months (53). However, the radiographic
success rates decreased during this period from 97.2 % to
92 % for ferric sulphate. These results were significantly
greater than that in the retrospective studies by Burnett and
Walker (14) and Smith et al. (113). Casas et al. (16) used
16 % ferric sulphate equivalent in an aqueous vehicle and
compared this with pulpectomy in primary molars. A higher
success rate was reported after 2 years for ferric sulphate
than with pulpectomy. However, the sample size after 3 years
was inadequate to demonstrate statistically significant
success rates for ferric sulphate.

Ferric sulphate is less toxic than formocresol and hence
it may be considered as an alternative to formocresol for
pulp therapy in primary molars (54). Dental caries in-
volving greater than half the inter-cuspal distance demon-
strated inflammation of the pulp horn. Thus extirpation of
coronal pulp alone would be adequate, thereby maintaining
vitality of the radicular tissue rather than tissue fixation,
which is achieved by formocresol. As ferric sulphate causes
only haemostasis, it is a more appropriate pulpotomy agent
and may be considered a good replacement for formocresol
in pulpotomy (24).

Application of ferric sulfate as a hemostatic agent for
long duration leads to persistent inflammation and delays
osseous wound healing. However, with adequate curettage
and irrigation of the osseous wound before closure, there
was no significant difference in the persistence of inflam-
mation or delay in osseous wound healing when compared
with controls (58).

Peracetic Acid

Peracetic acid has a wide spectrum of antimicrobial ac-
tion at low concentration, and within short duration (33,
38, 66, 67, 114, 115, 116, 117, 123, I. J. Hutchings and H.
Xezone, unpublished data). Aqueous solution of peracetic
acid (PAA) has high microbicidal activity against a broad
range of microorganisms (33, 37, 38, 59, 66). Peracetic
acid is an effective germicide against bacteria, yeast, and vi-
ruses at 0.03 % or lower concentration (7, 90). Alasri et al.
state that when peracetic acid and hydrogen peroxide are
used together, they have a combined action on biofilms
owing to the microbicidal activity of peracetic acid and det-
tachment of biofilm by hydrogen peroxide (2).

The sporicidal action decreased with storage due to hyd-
rolysis of peracetic acid, whereas it increased with high pH
concentration. The drawback of high pH concentration is
the carcinogenic potential of 1 % peracetic acid, as it is a tu-
mor promotor. The sporicidal action in a study by Jose-Luis
and Aylin (98) was as follows: hypochlorite > peracetic acid
> copper-ascorbate > glutaraldehyde > peroxide > phenol >
formaldehyde. Ageing, pH, and temperature were found to
greatly influence the order of the efficacy of these agents.
Comet assay and Saccharomyces cerevisiae strain D7 stu-
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dies have shown that the lowest effective dose which caused
genotoxicity in human leukocytes was 0.2 ppm for chlorine
dioxide, 0.5 ppm for sodium hypochlorite and peracetic
acid. One of the limitations of PAA is that it is known to
cause corrosion. However, it is used as a surface deconta-
minant for foods. This is mainly because there is no sur-
face adsorption of PAA and its by products like acetic acid,
water, and oxygen are nontoxic and can be washed off
easily (38, 74). The armamentarium for gnotobiotic studies
is also sterilized using PAA (9,124). According to Naenni
N et al., among the commonly used endodontic irrigants
like 10 % chlorhexidine, 3 % and 30 % hydrogen peroxide,
10 % peracetic acid, 5 % dichloroisocyanurate (NaDCC),
and 10 % citric acid, all had lower tissue dissolution capa-
city in comparison to 1 % (wt/vol) sodium hypochlorite
(NaOCl) (84).

Chloramine T

Chloramine T is N-chloro-p-toluensulphonamideso-
dium. It is used as an effective oral antiseptic agent. The
mode of action is by the conversion of amino acids into al-
dehydes, carbon dioxide, ammonia and nitriles. Irrigation
with a combination of hydrogen peroxide and chloramine,
chloramine or glutaraldehyde were more effective irrigants
than normal saline, 1% metronidazole or 3% hydrogen pe-
roxide (138). A study by Wennberg A evaluated the cytoto-
xic effect in a cell culture system using HeLa cells and the
initial tissue irritating effect of five antiseptics by applying
the antiseptics onto an intact nonepithelialized tissue sur-
face. 5% Chloramine-T produced the greatest cell and tissue
reactions, while 0.04% Jodopax, 0.1% Biosept, 0.1 % Hibi-
tane, or 0.5 % sodium hypochlorite showed no differences
in cell and tissue reactions. HeLa cell recovery was best fol-
lowing use of Jodopax, Chloramine-T or sodium hypochlo-
rite solutions, whereas tissue recovery for Biosept and
Hibitane were the best (130).

Hexetidine

Hexetidine is 1,3-bis(2-ethylhexyl)-5-amino-5-methyl-he-
xahydropyrimidine. Hexetidine is a good antibacterial and
antifungal agent with a wide spectrum of activity both in
vivo and in vitro. Hexetidine rinse is widely used as an an-
tiplaque and antigingivitis, as it decreases supragingival
plaque and gingival inflammation. In vitro and in vivo ac-
tion against Gram-positive and Gram-negative bacteria as
well as yeasts (Candida albicans) is well known (5, 96,
131). In addition, it is also used as an astringent, local
anaesthetic and deodorant. It has not been widely used in
endodontic treatment. Studies on in vitro oral biofilm mo-
dels demonstrate that antimicrobials like chlorhexidine,
hexetidine, delmopinol, amine fluoride/stannous fluoride,
triclosan, and phenolic compounds interfere with bacterial
metabolism and may inhibit biofilm development and ma-
turation (6).

Biochemical properties of hexetidine include oxidation
of intramitochondrial pyridine nucleotides and stimulation
of the rate of oxygen uptake and inhibition of the rate of
ATP synthesis. Thus hexetidine exhibits uncoupling of mi-
tochondrial oxidative phosphorylation (21). In vitro and ex
vivo experiments on the adherence of yeast cells to buccal
epithelial cells (BEC) and in vitro morphogenesis showed
that hexetidine caused decreased adherence of C. albicans
to buccal epithelial cells and modified or inhibited the
morphogenesis (60).

Although some microorganisms develop resistance to
hexetidine, it is only temporary and does not last long (63).
A concentration of 0.1 % w/v when used as an oral rinse de-
creases the number of microorganisms. As the concentra-
tion of hexetidine in the oral cavity decreases with time
there is a corresponding decrease in the antimicrobial ef-
fect. In an in vivo study, HPLC assay detected the presence
of hexetidine in saliva up to 25 min after an oral rinse. This
study also detected hexetidine below MICs for certain
microorganisms (77). One of the advantages is that the ex-
trinsic tooth staining is lower for hexetidine (107). Investiga-
tions testing the in vitro antifungal and fungicidal activities
of antimicrobials demonstrated that cetylpyridinium chlori-
de acheived significantly lower minimum inhibitory con-
centrations and had the maximum fungicidal activity in
comparison to chlorhexidine digluconate and hexetidine
(35).

Aminefluoride

38 % diamine silver fluoride, or Ag(NH3)2F, is used as
a Nd:YAG laser initiator. Yokoyama K and co-workers re-
ported that pulsed Nd:YAG laser or iontophoresis follo-
wing Ag(NH3)2F increased the permeability of the root
canal wall and occlusion of dentinal tubules. Root canals
treated using irradiation with an Nd:YAG laser that has
been coated with Ag(NH3)2F solution showed improved
results compared to either iontophoresis after coating with
Ag(NH3)2F solution, or coating alone (137). In vitro stu-
dies have revealed that CO2 laser effectively removes or
melts the smear layer of root canal walls after it is treated
with 38 % diamine silver fluoride [Ag(NH3)2F] solution
(29). Pulsed Nd:YAG laser irradiation for 2 sec after coating
tooth surfaces with 38 % Ag(NH3)2F solution prevents
fracturing of endodontically treated teeth (136). 4 % tita-
nium tetrafluoride solution on root canal walls modified
the smear layer on root canal walls, forming a massive
structure which could not be eliminated with EDTA and/or
NaOCl irrigations (136). The stability of this structure could
be useful in preventing infection of dentinal tubules and mic-
roleakage, as it permanently occludes these tubules and
avoids dissolution and disintegration of the smear layer
(105). Biofilm inhibitory concentrations for chlorhexidine
(300 times) and amine fluoride (75 times) is higher when
Streptococcus sobrinus exists as a biofilm in contrast to the mi-
nimum bactericidal concentration for planktonic cells (106).
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Cetylpyridinium chloride

Cetylpyridinium chloride (CPC) is a quaternary ammo-
nium salt (C21H38ClN; molecular weight, 358.07) having
a combination of hydrophilic and lipophilic affinities. CPC
is commonly used as a broad-spectrum antimicrobial against
oral bacteria and with properties and uses typical of catio-
nic surfactants. The primary mechanism of action of CPC
is by cell membrane penetration, which results in leakage of
cell contents, disturbance of bacterial metabolism and inhi-
bition of cell growth. These eventually cause cell death (11,
101, 134). It exhibits surface-active properties. Thus the
long duration of action is by virtue of the binding of CPC
to the glycoproteins covering the teeth and oral mucosa. It
does not alter the composition of the normal oral micro-
biota, which is in accordance with the American Dental
Association (Council on Dental Therapeutics).

Cetylpyridinium chloride (CPC) is recognised as an ef-
fective antiplaque agent and commonly found in oral hygie-
ne aids. It is less commonly used in root canal treatment. It
is available as an over-the-counter drug regulated by the
Food and Drug Administration (FDA) (1, 17, 61, 62, 69,
81, 97, 101, 116, 126) products. Mouthwashes and throat
lozenges containing 1 to 2 mg of CPC and the use of 1 loz-
enge every 2 hours for adults and children above 6 years of
age have been recommended. From April 2, 2004, the FDA
permitted the use of a fine mist of CPC for antimicrobial
action during the processing of poultry (level not to exceed
0.3 g of CPC per pound of poultry). Several animal studies
(4, 36, 93) on the cytotoxicity of CPC have shown it to be
a highly safe and effective antimicrobial agent. Studies in-
vestigating incorporation of 2.5 % CPC in orthodontic ad-
hesive have shown that antimicrobial properties are
imparted by CPC, while the diametral tensile strength of
the material remains the same. Slow and continuous release
of CPC over a prolonged period has numerous clinical be-
nefits. However, the maximum safe level for such slow re-
lease activity is unknown (3).

Investigations by various researchers have proved that
cetylpyridiniumchloride (CPC) mouthrinses are effective
anti-plaque agents, either when used alone or along with
toothbrushing(5, 17, 43, 76, 119, 133, 134). This has led the
US Food and Drug Administration Dental Plaque
Subcommittee to state that ‘‘it is reasonable to assume that
formulations containing (at least) 72–76 % available CPC
are active in reducing plaque and gingivitis (Federal Re-
gister 2003).’’ However certain studies have shown that the
antimicrobial action of CPC is inactivated by anionic sur-
factant substances like sodium lauryl sulphate (SLS) found
in toothpaste (17, 108). The same applies to chlorhexidine
rinses and hence a 30 min. time span between toothbrus-
hing and chlorhexidine has been suggested (8).

CPC has the distinction of being recognised by the
FDA Plaque Subcommittee after a six year review of over
40 active ingredients as being one of the only three (stan-
nous fluoride and essential oils – the remaining two safe

agents) antimicrobial agents which is safe and effective
(concentration range of 0.05 and 0.10 %) for the treatment
of plaque-induced gingivitis. (47, 134).

Conclusion

The field of endodontics is rapidly changing with tech-
nological advances based on sound scientific research.
A sterile endodontic canal is the cornerstone of successful
treatment of infected root canals. It will facilitate ease in ob-
turation and result in less post endodontic failures and
complications. Hence the search for an ideal root canal an-
timicrobial agent which will completely eliminate endodon-
tic pathogens from the root canal is one of the primary
goals of endodontics.
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