Introduction

The Wolfram Syndrome that is also known as DIDMOAD syndrome is characterized with the presence of diabetes insipidus, diabetes mellitus, optic atrophy and deafness resulting from a degenerative process involving pancreatic β cells, supraoptic and paraventricular nuclei, the optic nerve, and cranial nerve VIII. Dilatations in uro-genital system and variable neurological and psychiatric symptoms are also seen in patients with Wolfram syndrome. Recent studies showed the gene of Wolframsyndrome is linked to the markers on the short arm of chromosome 4 (3,7).

This paper describes a family with six siblings of whom the first one has full expression of Wolfram syndrome; diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. The other five siblings had mild symptoms of this disease. The main aim of this study was to investigate this family with a detailed clinical examination and DNA analysis.

Patients and Methods

Cases

Case One: An eighteen-year-old diabetic male patient was admitted with complaints of urinary retention and incontinence starting three months prior to admission. The patient had been diagnosed with diabetes mellitus two years ago. His general physical examination revealed normal body weight and height. He had myopia, optic atrophy, posterior polar cataract and strabismus. Planum nasale and palate examination revealed there was no difference between left and right side. There was no abnormality on the Weber and Rinne tests. The patient had hyperglycemia and ketonuria. Other investigations revealed normal complete blood count, liver and kidney function tests. On urinary examination, there were no urological anomalies. The patient had no family history of diabetes mellitus or deafness.

Case Two: Twenty-nine year old male patient had Type 1 diabetes mellitus for ten years and were using insulin with poor compliance to treatment. The patient had been given insulin therapy for diabetes mellitus five years. He had myopia, optic atrophy, posterior polar cataract and strabismus. On physical examination, the patient had hyperglycemia and ketonuria. Other investigations revealed normal complete blood count, liver and kidney function tests. On urinary examination, there were no urological anomalies. The patient had no family history of diabetes mellitus or deafness.

Case Three: This sibling is a thirty-two year old female. She had only complete deafness. From her history, it was learned that she had congenital deafness. She had no family history of diabetes mellitus or deafness.

Summary: Wolfram syndrome is a rare neurodegenerative disorder with autosomal recessive inheritance. The main characteristic features of this disorder are diabetes mellitus and optic atrophy. However, diabetes insipidus, sensorineural deafness, renal tract and neurologic abnormalities are seen in majority of patients. In this study, we describe a family in which two members had the main features of the syndrome while a third sibling had only sensorineural deafness. DNA analysis revealed that fully affected siblings were homoygote for a pointmutation on chromosome 4p whereas the third sibling with deafness was a heteroygote carrier for the same mutation. The characteristics of disease and phenotypic variations that possibly related to heteroygote carrier state were discussed.

Key words: Wolfram syndrome, DIDMOAD syndrome, Heteroygote carriers, Mutation
Four: Thirty-seven year old man had chest pain suggesting angina pectoris. He had not a major risk factor of coronary heart disease in history and physical examination. The other two siblings are a 22 year-old woman and 28 year-old man. The fifth sibling was no abnormality in history and physical examination. The sixth sibling has not been examined since he was living another city but it was learned from other family member that he had not a known health problem.

The examination and history of affected cases and similar health problems among the siblings suggested a genetic disorder in this family that consistent with Wolfram syndrome. So, all siblings and parents underwent a detailed laboratory examination for diabetes mellitus, diabetes insipidus, hearing loss and renal tract abnormalities.

It has been learned from the family history that grandsfather of these patients had committed suicide. No severe mental illness was detected on the psychiatric examination of cases but a tendency to depression on the first case and some changes in character on the second case were observed.

Discussion

Wolfram syndrome is a genetic disorder inherited in an autosomal recessive mode and it occurs in siblings of unaffected parents, which both are heterozygote carriers for the same autosomal recessive gene (3.7).Autosomal recessive diseases are clinically evident only in the homozygous for the mutation found. This means both alleles at a particular genetic locus are mutant in these conditions. On the other hand the heterozygous carriers in autosomal recessive inheritance are unaffected showing that muta tions in the gene cosegregate with the phenotype. Predispasion of Wolfram syndrome heterozygous to psychiatric illness as well as homozygous have been notified in some studies (10, 11). The Wolfram family in this study is very interesting from this aspect. The clinical presentation of the first and second cases were typical for Wolfram syndrome but the incomplete findings in the other cases lead us to show that there may have a point mutation on chromosome 4p confirming Wolfram syndrome. The first two cases were homozygous for this mutation in contrast with clinical presentations. However, the third case manifested with congenital sensorineural deafness was heterozygous for the same mutation. Sens orineural hearing loss clinically is not congenital in Wolfram syndrome but develops later without mutation. So, the characteristic of sensorineural hearing loss is not accor dance with classic Wolfram syndrome in this case. On the other hand, the history and detailed neurological investigations of this patient detected no cause for hearing loss. Therefore, the association of hearing loss with Wolfram is not clear in this patient. The DNA analysis detected no mutation in fourth case. Therefore, impaired OGTT test and early coronary heart disease in this patient does not seem related to Wolfram syndrome.

It is not possible to explain exactly how some manifestations of an autosomal recessive disease occur in a heterozygote carrier state. It is a probability that there may be a more complex genetic alternation rather than classical mendelian inheritance in at least some of Wolfram patients. Therefore, this hypothesis requires more complex and further analysis of these patients. Variable manifestations among patients, even between siblings suggested that mitochondrial dysfunctions could be involved in the disease. A loss of mitochondrial function was showed in two sporadic cases (2.8). Moreover, Barrientas et al showed the presence of a high proportion of deletion in mtDNA of a Wolfram patient (1). However this hypothesis has not been supported by a more recent study (4). Inove et al found mutations in a novel gene encoding a putative transmembrane protein in Wolfram patients and this appears to function in survival of slet beta-cells and neurons (5). This is an important finding to explain the different manifestations in disease phenotype but still insufficient to explain variable manifestations.

Optic atrophy is a characteristic finding of Wolfram syndrome. However aside optic atrophy, we observed unusual ophthalmological findings such as posterior cataract and strabismus in case one and moderate aortic insufficiency in case two. Whether these findings are related to Wolfram or simplex a finded is unclear at present. It has been emphasized previous studies that both homozygous and also heterozygous carriers of the gene for the Wolfram is tend to significant mental disorders (4, 5). A depressed mood in case one and some changes in character on the second case is consistent with these reports. The committed suicide of grand father in our family may also be related to a possible heterozygous carrier for the mutant gene of Wolfram.

Although the association is not clear, this study notices that some members of Wolfman families other than homozygous siblings may have some findings of this syndrome. Moreover, some unusual eye findings and cardiac abnormalities may be related to Wolfram syndrome. However, further studies are necessary to explain the cause of these phenotypic variations of this rare syndrome.

References

Four: Thirty-seven year old man had chest pain suggesting angina pectoris. He had not a major risk factor of coronary heart disease in history and physical examination. The other two siblings are a 22 year-old woman and 28 year-old man. The fifth sibling was no abnormality in history and physical examination. The sixth sibling has not been examined since he was living another city but it was learned from other family member that he had not a known health problem.

The history and examination of affected cases and similar health problems among the siblings suggested a genetic disorder in this family that consistent with Wolfram syndrome. So, all siblings and parents underwent a detailed laboratory examination for diabetes mellitus, diabetes insipidus, hearing loss and renal tract abnormalities. It has been learned from the family history that grandfather of these patients had committed suicide. No severe mental illness was detected on the psychiatric examination of cases but a tendency to depression on the first case and some changes in character on the second case were observed.

DNA analysis

For DNA analysis, blood samples of a living grandmother, her parents and all siblings (except only sixth sibling) were collected in tubes with EDTA. Genomic DNA was isolated from peripheral blood mononuclear cells and DNA samples were stored at −20°C. Mutations present in the WS patients or their parents (obligate carriers) were identified through direct sequencing of the WS locus. The genomic DNA was amplified by polymerase chain reaction (PCR) using the appropriate primers designed from the entire coding sequence of the four exons of the gene using genomic PCR (PCR System 9600 PE Applied Biosytems, Foster City, CA). The PCR products were directly sequenced by the Big Dye Primer Cycle Sequencing Reactions using the ABI 877 Integrated Thermal Cycler and the ABI 377 Automated Sequencer (Perker-Elmer Applied Biosytems, CA). A variation from the WS gene sequence in Genbank was determined to be a true mutation if there was a corresponding change in the amino acid sequence. Once a specific mutation was identified in the parental DNA, the appropriate region of the gene was then sequenced in all the other relatives. Those relatives showing the WS mutation found in the parents were considered carriers.

Results

The following results were found in the laboratory tests of cases.

Case One: Laboratory findings revealed that blood glucose level 374 mg/dl, hemoglobin A1c 13 %, urinary gravit y 1005, urinary osmolality 155 mOsm/kg, and plasma osmolality 306 mOsm/kg. Urinary osmolality did not show any marked increase during a three hours water deprivation test while the plasma osmolality went on to increase. Urinary osmolality started to increase after a 10 μg desmopressin by nasal spray (Table 1). Abdominal ultrasonography and intravenous pyelography showed increased echogenicity in the parenchyma of both kidneys and dilatation in pelvicaciel systems and ureters as well as increased residual urine. Blood glucose at fasting, random volume in the bladder, Crinial computed tomography was normal. A mild sensorineural hearing loss (30 dB on the right and 22 dB on the left) was found in audio metric examination.

Tab. 1: The results of water deprivation test in case 1 and 2 showing diabetes insipidus.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Psm</th>
<th>Usm</th>
<th>Psm</th>
<th>Usm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>161</td>
<td>321</td>
<td>161</td>
<td>321</td>
</tr>
<tr>
<td>1</td>
<td>310</td>
<td>294</td>
<td>294</td>
<td>294</td>
</tr>
<tr>
<td>2</td>
<td>315</td>
<td>266</td>
<td>266</td>
<td>186</td>
</tr>
<tr>
<td>3</td>
<td>327</td>
<td>142</td>
<td>327</td>
<td>142</td>
</tr>
<tr>
<td>4</td>
<td>346</td>
<td>575</td>
<td>575</td>
<td>575</td>
</tr>
</tbody>
</table>

* The samples obtained after 1 hour of 10 μg desmopressin by nasal spray

The blood sugar of patient was regulated with appropriate insulin doses. The clinical findings of diabetes insipidus improved dramatically within two weeks. Coronary angiography had revealed an early coronary heart disease with moderate occlusion on the left coronary artery. The history and detailed neurological investigation confirmed Weber and Rinne tests and showed bilateral severe sensorineural hearing loss.

Wolfram syndrome is a genetic disorder inherited in an autosomal recessive mode and it occurs in siblings of unaffected parents, which both are heterozygote carriers for retinal and optic atrophy mutations. So, the characteristic of sensorineural hearing loss is not accordance with classic Wolfram syndrome in this case. On the other hand, the history and detailed neurological investigations of this patient detected no cause for hearing loss. Therefore, the association of hearing loss with Wolfram is now having intermittent urinary catheterisations three or five times a day without urinary retention and incontinence.

Case Two: Laboratory investigations were normal except a blood glucose level of 304 mg/dl and slight decrease in urinary gravity (1006) and urinary osmolality (166 mOsm/kg) with an increase in plasma osmolality (305 mOsm/kg). Water deprivation test of this patient showed a slight increase in urinary osmolality suggesting an incomplete diabetes insipidus (Table 1). The use of chlorpropamide improved the symptoms of patients and urinary osmolality as well. Echocardiography showed moderate aortic insufficiency. Abdominal ultrasonography revealed no abnormality. Total hearing loss was found on audiometric investigation.

Case Three: The clinical findings of diabetes mellitus, DI, hearing loss, OA, and deafness revealed no abnormality in fifth siblings and parents. The clinical parameters of the all cases were summarized in the table 2.

Tab. 2: The clinical parameters of the siblings.

<table>
<thead>
<tr>
<th>Age</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>DM, DI, OA, hearing loss, renal tract abnormalities, other eye findings (table 1)</td>
</tr>
<tr>
<td>29</td>
<td>DM, DI (incomplete), aortic insufficiency, deafness, abnormal eye findings, neurological manifestations</td>
</tr>
<tr>
<td>36</td>
<td>DM, Diabetes mellitus, DI, Diabetes insipidus, OA, Optic atrophy</td>
</tr>
</tbody>
</table>

The DNA analysis revealed a 1885 C to T transversion of chromosome 4p in this family. This mutation leads to a change in codon 629, so that amino acid becomes tryptophan instead of arginine. The first and second siblings were homozygous for this mutation whereas the third sibling with hearing loss was heterozygous. The parents and grandmother were also heterozygous for the same mutation. The fourth and fifth siblings were homozygous for the wild-type allele.

Discussion

Wolfram syndrome is a genetic disorder inherited in an autosomal recessive mode and it occurs in siblings of unaffected parents, which both are heterozygote carriers for the same autosomal recessive gene (3.7). Autosomal recessive diseases are clinically evident only in the homozygous for the mutation found. This means both alleles at a particular genetic locus are mutant in these conditions. On the other hand the heterozygous carriers in autosomal recessive inheritance are unaffected showing that mutations in the gene co segregate with the phenotype. Predispasion of Wolfram syndrome heterozygous to psychiatric illness as well as homzygous have been notified in some studies (10, 11). The Wolfram family in this study is very interesting from this aspect. The clinical presentation of the first and second cases were typical for Wolfram syndrome but the incomplete findings of some of the other relatives showed a probable reason because they do raise questions about manifestations of the Wolfram syndrome mutant allele in heterozygotes. The DNA analysis of affected and unaffected parents showed that this family had a point mutation on chromosome 4p confirming Wolfram syndrome. The first two cases were homozygous for this mutation in contrast with clinical presentations. However, the third case manifested with congenital sensorineural deafness was heterozygous for the same mutation. Sensorineural hearing loss classically is not congenital in Wolfram syndrome but develops later without mutation. So, the characteristic of sensorineural hearing loss is not accordance with classic Wolfram syndrome in this case. On the other hand, the history and detailed neurological investigations of this patient detected no cause for hearing loss. Therefore, the association of hearing loss with Wolfram is now having intermittent urinary catheterisations three or five times a day without urinary retention and incontinence.

Although the association is not clear, this study notices that some members of Wolfram families other than homozygous siblings may have some findings of this syndrome. Moreover, some unusual eye findings and cardiac abnormalities may be related to Wolfram syndrome. However, further studies may improve the cause of these phenotypic variations of this rare syndrome.

References

Accepted November 2001.

Dr. Abdurrahman Kadayifçi,
Ömer Asim Aksoy cad. Levent apt.,
37/8, Sarigerme, Gaziantep, Turkey.
E-mail: kadayifci@gsantep.edu.tr