
Introduction

The biological role and function of DNA triple-helices
has been a mystery since their discovery in the late 1950’s
(22). After numerous experiments in vitro and years of re-
search, the triplex-mediated inhibition of transcription was
demonstrated for the first time in the 1988 (8). Since that
time, many projects were done with high optimism and effort,
and triplex-based therapeutics (triplex forming oligonucleoti-
des, TFO) have made significant progress in the last decade.
However, to realize fully the potential of the gene therapy set
of immediate problems must be overcome: (i) TFO uptake
into cells, (ii) TFO stability in vivo must be improved, (iii) re-
lated binding sites must be evaluated, (iv) the restricted bind-
ing code must be expanded. The main goal of this article is
to summarize current knowledge about biological properties
of TFO, its biological activity, obstacles in wide gene therapy
use and selected ways to enhance TFO qualities.

Regulation of gene expression 
by DNA targeting

Successful gene-targeting reagents must be functional
under physiological conditions and must bind chromosomal
target sequences embedded in chromatin. Triplex-forming
oligonucleotides (TFOs) recognize and bind specific sequ-
ences via the major groove of duplex DNA, can be en-

hanced in many aspects and have potential for gene target-
ing in vivo.

Approaches for regulation of gene expression based on
sequence-specific targeting of nucleic acids by oligonucleo-
tides take advantage of hydrogen bonds that form between
the bases of dsDNA and oligonucleotide. Hydrogen bonds
are relatively weak interaction, and stability of the structure
formed depends upon the sequential binding of bases.
There are two possible ways how to use oligonucleotides as
inhibitors of gene expression, they are called antigene and
antisense approach. 

Target for antisense strategy is a ribonucleic acid
(RNA), where translation of RNA is affected by several dif-
ferent mechanisms such as: (i) translational arrest by bind-
ing to the translational initiation codon, (ii) disruption or
immobilization of ribosomal complex and (iii) cleavage of
mRNA by RNase H.

Antisense strategy is not covered by this article, for de-
tailed view on antisense technology see review of Braasch
DA and Corey DR (7).

In the antigene approach, oligonucleotides are synthe-
sized that are complementary to the DNA sequence. Within
the frame of antigene approach are at least three strategies
under active study: minor groove binding polyamides,
strand displacing PNAs (peptide nucleic acid oligomers),
and binding of major groove by triplex forming oligonuc-
leotides (TFO). 
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Polyamides

Polyamides are a class of heterocyclic small molecules
with the potential of controlling gene expression by binding
to the minor groove of DNA in a sequence-specific manner,
and usually refer to polymers containing N-methylimida-
zole and N-methylpyrrole amino acids. Crescent-shaped
polyamides bind as antiparallel dimers with each polyamide
making specific contacts with each strand on the floor of
the minor groove. An Im/Py pair distinguishes G x C from
C x G and both of these from A x T/T x A base pairs.
A Py/Py pair specifies A,T from G,C but does not distin-
guish AT from T x A. To break this degeneracy White et al
(64) added a new aromatic amino acid, 3–hydroxypyrrole
(Hp), to increase the repertoire to test for pairings that
discriminate A x T from T x A. They found that replace-
ment of a single hydrogen atom with a hydroxy group in an
Hp/Py pairing regulates affinity and specificity by an order
of magnitude and therefore able to distinguish all four
Watson-Crick base pairs in the minor groove of DNA (64).
See papers for review of polyamides (13,63,64).

PNAs

PNAs (peptide nucleic acid oligomers) are artificially
constructed DNA analogs, where (2–aminoethyl) glycine
carbonyl unit linked to the nucleotide bases through the gly-
cine amino nitrogen and methylene carbonyl linkers has re-
placed normal sugar-phosphate backbone. 

As a result, PNAs have neutral backbone and hybridi-
zation is not affected by intrastrand repulsion and occurs
with enhanced affinity (18) and rates of association (50).
PNAs seems to do not be substrates for nucleases or pro-
teases (12). Under many condition, compared to DNA and
RNA, PNAs have improved flexibility and PNA:DNA du-
plex is more stable than DNA:DNA complex (18). PNA
can inhibit translation of target genes by hybridization to
mRNA, using a steric blocking mechanism, or by strand in-
vasion within relaxed DNA, by formation four-stranded
complex (33,41). Reviews of PNAs can be seen in papers of
Nielsen PE or Gambari R (24,40).

Triplex forming oligonucleotides

This approach utilizes the ability of single-strand nucleic
acid to bind major groove of double helix DNA by Hoog-
steen hydrogen bonds in sequence-specific manner and
form triple-helix structure (22,23,29). To form triple helix is
required a polypurine:polypyrimidine tract within the target
duplex, which are common in mammalian genomes (4).
Typical TFO is from 15bp to 25bp long. TFO can be com-
posed from pyrimidine motif or purine-rich sequence. 

Pyrimidine TFO binds to purine strand of DNA duplex
in parallel orientation (based on the triplets C+(GC) and
T(AT)). C+ means that cytosine is protonated. Protonation
is required for triplex formation and arise at acidic pH

(4.5–6), and therefore limits in vivo usability. Purine-rich
TFO binds to the purine strand of the duplex in antiparal-
lel orientation (triplex is build up from triplets of the
G(GC) and A(AT) types). Several studies have been done
to improve TFO activity under physiological conditions by
oligonucleotides modification; it is discuss later on in this
paper. 

Following chapters are focused on TFO; properties of
PNAs are reviewed in papers of Nielsen PE or Gambari. It
remains to be seen if polyamides approach will be deve-
loped for more widespread in vivo work, and therefore it is
not discuss more deeply.

Biological roles of TFO

In early biological studies, most envisioned potential
applications were gene expression inhibition by blocking of
transcription initiation or elongation at a DNA duplex target,
disruption of necessary DNA structure or blocking of re-
gulatory sites (16,25,28,44). Transcription has been shown
to be blocked at region where triplex is formed by preven-
tion of binding transcription machinery factors (17,36); and
several studies have demonstrated that TFOs can decrease
gene expression in mammalian cells in a directed way (47).

Alternative strategy use TFO to mediate genome modi-
fication, resulting in a change in target sequence (55,59).
The changes of target sequence can be permanent, and
therefore this strategy has a potential as a tool for gene
knockout and/or correction. DNA damaging agents have
been successfully coupled to TFOs to induce site-directed
DNA damages. Very often are used TFO linked to alkylat-
ing compounds, 125I-labeled TFO, TFO attached to con-
version-electron-emitter, TFO with photoactivatable agent
(27,42,58). Photoactivable molecules attached to TFO pro-
vide the advantage of „switching on“ when irradiated with
a light of appropriate wavelength. Most of the photoacti-
vable molecules work optimally when irradiated by wave-
lengths <700 nm, very often is used psoralen and UV
radiation (3,15,26,28,57). However, for use in biological en-
vironment the red-shifted wavelengths activable molecules
are preferred since the bodily tissues are most transparent
in these spectral regions.

TFO induced mutations and recombinations

It would be mistake to conclude from previous data that
only mutagen-conjugated TFOs are capable to induce muta-
tions in the target sequence. Mutagenicity of unconjugated
TFOs was shown to be a consequence of the stimulation of
DNA repair by the formation of the triple helix, which
seems to be recognized by the nucleotide excision repair
complex as a lesion (62). Moreover, TFOs (without any
DNA reactive agents) administered for several constitutive
days can induce mutations at specific genomic site in the
somatic cells of adult mice (56). In this study, mice treated
with the sequence-specific TFO had a fivefold elevated mu-
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tation rate in the target gene. All tissues tested showed
TFO-induced mutagenesis except the brain, consistently
with TFOs inability to cross blood-brain barrier. 

Another application of the triple helix formation is
triplex-induced recombination. Both conjugated-TFOs and
unconjugated-TFOs could trigger recombination (20,21).
The frequency of the recombination depends heavily on the
chosen method for the delivery of the TFO into the nucle-
us, and varies from sevenfold (for cationic liposomes) to
more than 1000–fold (microinjection into the nucleus) in-
creases of recombinants over the background (34).

As mentioned above, the third strand of nucleic acid
has the ability to provoke DNA repair and stimulate re-
combination. TFO linked to a short DNA fragment homo-
logous to the target site (except for the base pair to be
corrected) can be used to mediate targeted gene conversion
(31). In this bifunctional molecule, the TFO domain me-
diates site-specific binding to target the molecule to the de-
sired gene. This binding also triggers repair to sensitize the
target site to recombination. The tethered homologous do-
nor fragment can participate in recombination and gene
conversion with the target gene to correct or alter the
nucleotide sequence. Chan, P.P. and his colleagues (31)
used this approach in vitro successfully to correct single
base-pair mutation, correction frequencies were in the ran-
ge of 0.1–0.5%. Both parts of such a bifunctional molecules
can be linked to each other either by covalent linkage (5,11)
or by annealing via a short stretch of complementary nucleo-
tides (5).

Enhancement of the triplex binding code

The requirement of long (>15 bp) polypurine: polypyri-
midine sequence to form triplex is assurance of high speci-
ficity, but at the same time, it becomes the limitation of this
approach. Often polypurine:polypyrimidine site is inter-
rupted by inverted nucleotides, or do not span or overlap
the transcription-binding site. It was shown that even single
mismatch at the center of the triplex destabilize the triple
helix (37). Recently some progress in the case of inter-
rupted target polypurine:polypyrimidine sequence by one
or two inverted nucleotide(s) (purine in the stretch of pyri-
midines or pyrimidine in the stretch of purines) was made
with TFOs modified at the sites of inversions. Generally,
the major reasons for instability of triplexes on mixed sequ-
ences are possible hydrogen-bonding patterns. Purine bases
engaged in Watson Crick pairing can form two additional
hydrogen bonds, while duplex pyrimidines can only form
one additional hydrogen bond. There are several categories
of compounds challenging for efficient binding at inversion
site: natural bases, intercalators, analogues that bind in-
verted pyrimidine by single hydrogen bond and analogues
that bind inverted purine by two hydrogen bonds. Although
natural bases in parallel triplexes form triplets at inverted
base pairs, these triplexes are less stable then perfectly
matching triplexes (61). Intercalators are used to stabilize

the triplex, usually are incorporated into the TFOs adjacent
to the mismatch site. Unfortunately, stability enhancement
is at the cost of some degree of sequence specificity. Ana-
logues that bind C:G interruption both in pyrimidine and
purine motif triplexes have been designed. Some of them
have enhanced specificity because of the interaction with
both cytosine and the guanine in the inverted base pair
(30). To overcome some of the steric problems associated
with base pair inversions, Durland et al. (14) substituted se-
veral natural bases of triplex by azoles derivates, that have
smaller aromatic ring. 

The formation of triple helical structures by association
of a double helix containing an oligopyrimidine:oligopurine
sequence with a single stranded TFO is reminiscent in many
aspects of the formation of double-helical structures by as-
sociation of two Watson-Crick complementary single
strands. It is accepted nucleation-zipping model for forma-
tion both double helix and triple helix molecules, but asso-
ciation and dissociation rate constants of triple helices are
100 or more times slower than those of double helices. 

Major limitations in practical use of TFOs

Desirable characteristics for TFO are high sequence
specificity (sequence of 17 basis is unique in human geno-
me), high binding affinity, bioavailability, efficient cellular
uptake and resistance to degradation by cellular nucleases.
TFO can by modified in several ways; these modifications
can affect affinity and specificity of TFO molecule to du-
plex, improve the degradation resistance or to provide TFO
molecule by additional functionality (e.g. by attaching of
DNA-damaging agent).

The major drawback of G-rich (polypurine) TFO is the
tendency, at physiologic potassium concentrations, to self-
associate into quartets and form tetrads, which inhibit
triplex formation (1,10). Nevertheless, this drawback can
be overcome by chemical modifications, to be specific by
the amidation of the oligonucleotide during its synthesis or
by converting of phosphodiester bonds in a TFO to posi-
tively-charged linkages (moreover, this modification can
increase the formation of triplex DNA dramatically) (9).
Chemical modification can include every internucleoside
linkage, as there is no need for an enzyme like RNase H to
recognize and act upon the triplex. For most modifications
of purine triplex formation is the affinity constant nearly
temperature-independent. In contrast, the pyrimidine tri-
plex is strongly favored at lower temperatures (39).

The pH limitation of pyrimidine motif can be decreased
by base modification of cytosine to 5–methylcytosine.
Effect of 5–methylcytosine is due to the contribution of the
methyl group in the major groove to base stacking (49),
and/or the exclusion of the water molecules from the groove
(66). Although cytosine has been replaced with several
analogues, such as 6-keto derivate of 5-methylcytydine,
pseudoisocytidine, deoxycytidine (30) and 8-oxoadenine
(38), up to now, only 5-methylcytosine has been tested in

153



biological assays. Backbone modifications, such N3’—>P5’
phosphoramidation (19,53,54) or replacement of phos-
phate linkage (2) improve TFO binding in vitro and stability.
The application of TFO based on strands of 2’-O-Methoxy
(OMe) sugar residues or 2’-O,4’-C-methylene bridged nuc-
leic acid (2’,4’-BNA) take an advantage of the fact, that
RNA third strands form more stable pyrimidine motif tri-
plexes than the corresponding DNA strands (48).

There are some major obstacles to applications of TFO
under physiological conditions. Cellular uptake and deli-
very of TFO to target sequence into the nucleus is probably
biggest obstacle for successful therapeutic utilization.
Oligonucleotides are water-soluble and it may cause low
efficiency in passing of cell membranes. The mechanism of
cellular uptake of oligonucleotides is still poorly under-
stood, but the conjugation of oligonucleotides with lipophi-
lic substances to enhance membrane permeability has been
proven. Triplex formation involves binding of a negatively
charged third strand to a double-negatively charged duplex.
Experimentally the charge repulsion is neutralized by levels
of Mg2+ (5–10 mM) that are much higher than in cells (43).
Triplex formation involves conformational changes on the
part of the TFO and partial distortion of the underlying
duplex. The cytosine protonation in the pyrimidine motif
triplexes is necessary for the proper formation of the second
Hoogsteen hydrogen bond. Adjacent cytosines within
pyrimidine TFO often destabilize triplex, compare to TFO
with isolated cytosines (65). Traditionally this has been asc-
ribe to charge-charge repulsion effects (60), but recently in-
complete protonation of adjacent cytosines was suggested
to be the critical factor (51).

Aside from issues of cellular uptake, function of C+/GC
TFO at physiological pH and salt concentration or number
of related binding sites is the problem of accessibility of
DNA sequence for binding of TFO. Access to a site can be
lost if DNA binding protein already occupies the major
groove or if the target sequence is covered by a nucleosome.
It is clear that in vivo at least some sites must be free for
TFO access, but mere presence of a purine-rich stretch on
one strand of the DNA duplex does not guarantee triplex
formation. 

Applications of TFO

Postel E.H. and colleagues (46) demonstrated the first
example of TFO-directed inhibition of gene transcription in
cells on the human c-myc oncogene. The effects of TFOs on
transcription is being studied in many cells and chromo-
somal targets including, integrated HIV, genes for c-myc,
HER2/neu, the interlukin-2 receptor, the epidermal growth
factor receptor, aldehyde dehydrogenase etc (45,59). In ge-
neral, these studies have shown a repression of mRNA or
protein produced from the targeted gene by as much as
50–90%. It is possible to link TFOs to polyamines and take
an advantage of multiple effects of these molecules. In one
specific case, TFO’s complexed with polyamines increased
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Fig. 1: DNA targeting is possible by at least are three ways
– (A) by polyamides binding in the minor groove, (B) by
strand displacement using PNAs (peptide nucleic acid oli-
gomers) and (C) by triplex forming oligonucleotides bin-
ding in the major groove. (Modified from Dagle JM, Weeks
DL. Oligonucleotide-based strategies to reduce gene ex-
pression. Differentiation; Research in Biological Diversity
2001;69(2–3):75–82.)

Fig. 2: Chart of the pyrimidine motif for triple helix forma-
tion. (A) Diagrams show direct Hoogsteen and Watson-
Crick hydrogen bonds formed in triplets of pyrimidine
motif. (B) Parallel orientation of the TFO in the pyrimidi-
ne triplex motif. 

Fig. 3: Chart of the purine motif for triple helix formation.
(A) Diagrams show reverse Hoogsteen and Watson-Crick
hydrogen bonds formed in triplets of purine motif. (B)
Antiparallel orientation of the TFO in the purine triplex
motif. 



the stability of the triplex and decreased the c-myc mRNA
levels in MCF-7 breast cancer cells by 50–65% (52). 

The triplex-forming potential of TFOs measured in vitro
does not necessarily correlate with the ability of TFOs to
affect expression of a targeted gene in vivo, but bioactivity
implies at least some degree of target accessibility. It has
been shown that targeting efficiency is sensitive to the bio-
logy of the cell, specifically, cell cycle status. Targeted muta-
genesis was variable across the cycle with the greatest
activity in S phase (35).

Conclusion

The use of oligonucleotides to control gene expression
has long fascinated researchers because of the potential to
rapidly generate potent and specific agents. This review co-
vers only part of oligonucleotide-based approaches, but it
shows number of very attractive features of this methods,
suggesting that TFOs can be used to regulate gene expres-
sion or to mediate site-specific genome modification. This
capacity is based on the ability of the TFOs to form triple-
xes with sequence specificity, to provoke action of DNA re-
pair machinery. Potential recombination and gene
correction is next step in this cascade. Although an effort is
still necessary on the field of development of TFOs with ro-
bust gene targeting activity and highly efficient way of deli-
very TFOs into the nucleus, recent data suggest that this
effort will be rewarded. We have studied TFOs features on
eukaryotic cells stably expressing luciferase gene. We added
to the luciferase gene short sequence recognized by TFO,
located either in regulatory or in coding sequence of lucife-
rase gene. We have demonstrated that this approach can be
used during development of new drugs for gene repair. Our
results will be published elsewhere. 
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