Acta Med. 2025, 68: 82-86

https://doi.org/10.14712/18059694.2025.25

Biomechanics of Arteriovenous Fistula: An Overview of Hemodynamic and Remodeling Mechanisms

Nikola Petrováa,b,c, Zbyněk Sobotkab, Lukáš Hornýb

aCardiac Surgery Clinic of the Faculty of Health Studies of Jan Evangelista Purkyně University in Ústí nad Labem and Krajské zdravotní – Masaryk Hospital in Ústí nad Labem, Czech Republic
bCzech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic
cCharles University, Third Faculty of Medicine, Prague, Czech Republic

Received July 17, 2025
Accepted September 10, 2025

References

1. Boerstra BA, Boenink R, Astley ME, et al. The ERA Registry Annual Report 2021: a summary. Clin Kidney J. 2024; 17(2), sfad281. <https://doi.org/10.1093/ckj/sfad281> <PubMed>
2. Himmelfarb J, Vanholder R, Mehrotra R, Tonelli M. The current and future landscape of dialysis. Nat Rev Nephrol. 2020; 16(10): 573–85. <https://doi.org/10.1038/s41581-020-0315-4> <PubMed>
3. Wouk N. End-Stage Renal Disease: Medical Management. Am Fam Physician. 2021 Nov 1; 104(5): 493–9.
4. Schmidli J, Widmer MK, Basile C, et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018 Jun; 55(6): 757–818. <https://doi.org/10.1016/j.ejvs.2018.02.001>
5. Karkar A. Modalities of hemodialysis: quality improvement. Saudi J Kidney Dis Transpl. 2012 Nov; 23(6): 1145–61.
6. Golper TA, Fissell R, Fissell WH, et al. Hemodialysis: Core Curriculum 2014. Am J Kidney Dis. 2014; 63(1): 153–63. <https://doi.org/10.1053/j.ajkd.2013.07.028> <PubMed>
7. Lok CE, Huber TS, Orchanian-Cheff A, Rajan DK. Arteriovenous Access for Hemodialysis. JAMA. 2024; 331(15): 1307-1317. <https://doi.org/10.1001/jama.2024.0535>
8. Vo T, Tumbaga G, Aka P, Behseresht J, Hsu J, Tayarrah M. Staple aneurysmorrhaphy to salvage autogenous arteriovenous fistulas with aneurysm-related complications. J Vasc Surg. 2015 Feb; 61(2): 457–62. <https://doi.org/10.1016/j.jvs.2014.09.008>
9. Almasri J, Alsawas M, Mainou M, et al. Outcomes of vascular access for hemodialysis: A systematic review and meta-analysis. J Vasc Surg. 2016 Jul; 64(1): 236–43. <https://doi.org/10.1016/j.jvs.2016.01.053>
10. Dialysis access management. 2nd ed. Cham: Springer, 2020. ISBN: 3-030-52993-2.
11. Tordoir J, Canaud B, Haage P, et al. EBPG on Vascular Access. Nephrol Dial Transplant. 2007; 22(Suppl 2): ii88–ii117.
12. Dixon BS. Why don’t fistulas mature? Kidney Int. 2006; 70(8): 1413–22. <https://doi.org/10.1038/sj.ki.5001747>
13. Dixon BS. Hemodialysis vascular access survival: upper-arm native arteriovenous fistula. Am J Kidney Dis. 2002; 39: S92–S101. <https://doi.org/10.1053/ajkd.2002.29886>
14. Pasklinsky G, Meisner RJ, Labropoulos N, et al. Management of true aneurysms of hemodialysis access fistulas. J Vasc Surg. 2011; 53(5): 1291–7. <https://doi.org/10.1016/j.jvs.2010.11.100>
15. Ramuzat A. Steal phenomenon in radiocephalic arteriovenous fistula: In vitro haemodynamic and electrical resistance simulation studies. Eur J Vasc Endovasc Surg. 2003; 25: 246–53. <https://doi.org/10.1053/ejvs.2002.1842>
16. Inston N, Mistry H, Gilbert J, et al. Aneurysms in Vascular Access: State of the Art and Future Developments. J Vasc Access. 2017; 18(6): 464–72. <https://doi.org/10.5301/jva.5000828>
17. Balaz P, Björck M. True aneurysm in autologous hemodialysis fistulae: definitions, classification and indications for treatment. J Vasc Access. 2015; 16(6): 446–53. <https://doi.org/10.5301/jva.5000391>
18. Sakurai K, Sawamura T. Stress and vascular responses: endothelial dysfunction via lectin-like oxidized low-density lipoprotein receptor-1. J Pharmacol Sci. 2003 Mar; 91(3): 182–6. <https://doi.org/10.1254/jphs.91.182>
19. Pries AR, Reglin B, Secomb TW. Modeling of angioadaptation: insights for vascular development. Int J Dev Biol. 2011; 55(4–5): 399–405. <https://doi.org/10.1387/ijdb.103218ap> <PubMed>
20. González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol. 2025 Feb 20. <https://doi.org/10.1113/JP287387>
21. Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020 Jan; 17(1): 52–63. <https://doi.org/10.1038/s41569-019-0239-5>
22. Dessalles Q, Tresset G, Dufourcq P, L’Heureux N, Tracqui P. Shear stress promotes endothelial cell alignment and elongation through the PKA-RhoA axis. Sci Rep. 2021; 11: 1–13.
23. Decorato I, Bonnefous O, Gindre J, et al. Evaluation of shear stress distribution in arteriovenous fistulae using patient-specific CFD simulations. Med Biol Eng Comput. 2014 Jun; 52(6): 579–87.
24. McGah PM, Leotta DF, Beach KW, Aliseda A. A longitudinal study of hemodynamics at the venous needle during hemodialysis. J Biomech Eng. 2014 Jan; 136(1): 011002.
25. Samra T, Rai M, Agrawal N. Hemodynamic assessment of arteriovenous fistula using computational fluid dynamics: a review. J Vasc Access. 2022 Nov; 23(6): 743–57.
26. Thomas CJ, Sumam D. Blood flow through arteries. J Med Eng Technol. 2016; 40 (7–8): 255–67.
27. Ku DN. Blood flow in arteries. Annu Rev Fluid Mech. 1997; 29: 399–434. <https://doi.org/10.1146/annurev.fluid.29.1.399>
28. Kadohama T, Cancilla M, Mathews B, Sumpio BE. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J Cell Physiol. 2007; 191(1): 45–53.
29. Passerini AG, Milsted A, Rittgers SE. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg. 2004; 40(5): 947–56.
30. Andueza A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020 Feb 4; 33(2): 108491. <https://doi.org/10.1016/j.celrep.2020.108491> <PubMed>
31. Sigovan M, Hope MD, Dyverfeldt P, Saloner D. Comparison of four-dimensional flow MRI and computational fluid dynamics simulations in an arteriovenous fistula. Magn Reson Med. 2013; 70(2): 423–30.
32. Colley E, Krishnamoorthy MK, Roy-Chaudhury P, Aragon M, Allon M, Han H-C. Computational simulations of disturbed flow-induced progression of venous neointimal hyperplasia in hemodialysis vascular access. Am J Physiol Heart Circ Physiol. 2022 Jun 1; 322(6): H993–H1004.
33. Carroll GT, Roy-Chaudhury P, Schwab SJ, et al. Venous stenosis in arteriovenous fistulas for hemodialysis: correlation with flow, hemodynamic, and clinical parameters. Kidney Int. 2009 Nov; 76(9): 969–75.
34. Carroll GT, Roy-Chaudhury P, Zhang J, et al. Arteriovenous fistula vascular remodeling: prospective analysis with quantitative magnetic resonance imaging. J Vasc Access. 2011; 12(1): 42–9.
35. McGah PM, Leotta DF, Beach KW, Aliseda A. A longitudinal study of hemodynamics at the venous needle during hemodialysis. J Biomech Eng. 2013 Aug; 135(8): 081009. <https://doi.org/10.1115/1.4023133> <PubMed>
36. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Circulation. 2007 Jun 19; 115(24): 2933–43.
37. He Y, Wen Z, Xu L, Cheng L, et al. Biomechanical factors in venous remodeling of arteriovenous fistulas: a computational analysis integrating cellular response. Front Physiol. 2023; 14: 1155679.
38. Alam F, Walsh WR, Newport D. Numerical analysis of the effects of arteriovenous fistula configuration on hemodynamics. J Vasc Access. 2022 Jan; 23(1): 70–9.
39. Kharboutly A, Buckley C, Mackay TG, Hose DR. Investigation of hemodynamic stresses in an idealized arteriovenous dialysis fistula. Med Eng Phys. 2007; 29(9): 999–1006. <https://doi.org/10.1016/j.medengphy.2006.10.018>
40. Rajabi-Jagahrgh E, Zambanini A, Bressloff NW. Wall shear stress characteristics in arteriovenous fistulae: revisiting the potential causes of intimal hyperplasia. J Biomech. 2013; 46(5): 999–1006.
41. Krishnamoorthy MK, Banerjee RK, Wang Y, et al. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 2008 Apr; 73(8): 987–95.
42. Browne LD, Griffin P, Kavanagh EG, Walsh MT. Intimal hyperplasia in vascular access: the role of blood flow disturbance. J Vasc Access. 2015; 16(2): 77–83.
43. Ene-Iordache B, Remuzzi A. Hemodialysis vascular access: new insights into vascular pathophysiology and computational modeling. Semin Dial. 2011; 24(1): 69–77.
44. van Haaften EE, de Jonge N, van der Laan AM, et al. Oscillatory shear stress affects endothelial cell morphology and function in an in vitro AVF model. J Vasc Surg. 2021 Apr; 73(4): 1374–82.
45. Carrara E, Soliveri L, Poloni S, Bozzetto M, Campiglio CE. Effects of high-frequency mechanical stimuli on flow-related vascular cell biology. Int J Artif Organs. 2024 Aug; 47(8): 590–601. <https://doi.org/10.1177/03913988241268105> <PubMed>
46. Carroll GT, Roy-Chaudhury P, Zambanini A, Bressloff NW. Arteriovenous fistula flow dynamics: impact of anastomosis angle. J Biomech. 2018 Jan 3; 66: 28–35.
47. Prouse G, Lu X, Baxter D, Wood NB, Xu XY. The influence of anastomosis angle on the flow patterns in a radio-cephalic arteriovenous fistula. Med Eng Phys. 2020 Feb; 76: 1–9.
48. Stella F, Osswald M, Korten I, et al. Computational flow analysis in vascular access for hemodialysis. PLoS One. 2019; 14(9): e0221366.
49. Hsiao ST, Roy-Chaudhury P, Wang Y, et al. Hemodynamic analysis of needle infiltration during hemodialysis. ASAIO J. 2010; 56(4): 287–93.
50. Fulker D, Barber T, Young T, Lawford PV, Hose DR. Computational hemodynamics of steady and pulsatile flow in an arteriovenous fistula used for hemodialysis access. Cardiovasc Eng Technol. 2013; 4(4): 346–59.
51. Woraratsoontorn P, Bunmun P. Investigation of needle tip design and flow patterns in hemodialysis access using computational fluid dynamics. Biomed Eng Online. 2024; 23(1): 25.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive