Acta Med. 2025, 68: 82-86
https://doi.org/10.14712/18059694.2025.25
Biomechanics of Arteriovenous Fistula: An Overview of Hemodynamic and Remodeling Mechanisms
References
1. Boerstra BA, Boenink R, Astley ME, et al. The ERA Registry Annual Report 2021: a summary. Clin Kidney J. 2024; 17(2), sfad281.
<https://doi.org/10.1093/ckj/sfad281>
<PubMed>
2. J, Vanholder R, Mehrotra R, Tonelli M. The current and future landscape of dialysis. Nat Rev Nephrol. 2020; 16(10): 573–85.
<https://doi.org/10.1038/s41581-020-0315-4>
<PubMed>
3. N. End-Stage Renal Disease: Medical Management. Am Fam Physician. 2021 Nov 1; 104(5): 493–9.
4. J, Widmer MK, Basile C, et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018 Jun; 55(6): 757–818.
<https://doi.org/10.1016/j.ejvs.2018.02.001>
5. A. Modalities of hemodialysis: quality improvement. Saudi J Kidney Dis Transpl. 2012 Nov; 23(6): 1145–61.
6. TA, Fissell R, Fissell WH, et al. Hemodialysis: Core Curriculum 2014. Am J Kidney Dis. 2014; 63(1): 153–63.
<https://doi.org/10.1053/j.ajkd.2013.07.028>
<PubMed>
7. CE, Huber TS, Orchanian-Cheff A, Rajan DK. Arteriovenous Access for Hemodialysis. JAMA. 2024; 331(15): 1307-1317.
<https://doi.org/10.1001/jama.2024.0535>
8. T, Tumbaga G, Aka P, Behseresht J, Hsu J, Tayarrah M. Staple aneurysmorrhaphy to salvage autogenous arteriovenous fistulas with aneurysm-related complications. J Vasc Surg. 2015 Feb; 61(2): 457–62.
<https://doi.org/10.1016/j.jvs.2014.09.008>
9. J, Alsawas M, Mainou M, et al. Outcomes of vascular access for hemodialysis: A systematic review and meta-analysis. J Vasc Surg. 2016 Jul; 64(1): 236–43.
<https://doi.org/10.1016/j.jvs.2016.01.053>
10. Dialysis access management. 2nd ed. Cham: Springer, 2020. ISBN: 3-030-52993-2.
11. J, Canaud B, Haage P, et al. EBPG on Vascular Access. Nephrol Dial Transplant. 2007; 22(Suppl 2): ii88–ii117.
12. BS. Why don’t fistulas mature? Kidney Int. 2006; 70(8): 1413–22.
<https://doi.org/10.1038/sj.ki.5001747>
13. BS. Hemodialysis vascular access survival: upper-arm native arteriovenous fistula. Am J Kidney Dis. 2002; 39: S92–S101.
<https://doi.org/10.1053/ajkd.2002.29886>
14. G, Meisner RJ, Labropoulos N, et al. Management of true aneurysms of hemodialysis access fistulas. J Vasc Surg. 2011; 53(5): 1291–7.
<https://doi.org/10.1016/j.jvs.2010.11.100>
15. A. Steal phenomenon in radiocephalic arteriovenous fistula: In vitro haemodynamic and electrical resistance simulation studies. Eur J Vasc Endovasc Surg. 2003; 25: 246–53.
<https://doi.org/10.1053/ejvs.2002.1842>
16. N, Mistry H, Gilbert J, et al. Aneurysms in Vascular Access: State of the Art and Future Developments. J Vasc Access. 2017; 18(6): 464–72.
<https://doi.org/10.5301/jva.5000828>
17. P, Björck M. True aneurysm in autologous hemodialysis fistulae: definitions, classification and indications for treatment. J Vasc Access. 2015; 16(6): 446–53.
<https://doi.org/10.5301/jva.5000391>
18. K, Sawamura T. Stress and vascular responses: endothelial dysfunction via lectin-like oxidized low-density lipoprotein receptor-1. J Pharmacol Sci. 2003 Mar; 91(3): 182–6.
<https://doi.org/10.1254/jphs.91.182>
19. AR, Reglin B, Secomb TW. Modeling of angioadaptation: insights for vascular development. Int J Dev Biol. 2011; 55(4–5): 399–405.
<https://doi.org/10.1387/ijdb.103218ap>
<PubMed>
20. González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol. 2025 Feb 20.
<https://doi.org/10.1113/JP287387>
21. C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020 Jan; 17(1): 52–63.
<https://doi.org/10.1038/s41569-019-0239-5>
22. Q, Tresset G, Dufourcq P, L’Heureux N, Tracqui P. Shear stress promotes endothelial cell alignment and elongation through the PKA-RhoA axis. Sci Rep. 2021; 11: 1–13.
23. I, Bonnefous O, Gindre J, et al. Evaluation of shear stress distribution in arteriovenous fistulae using patient-specific CFD simulations. Med Biol Eng Comput. 2014 Jun; 52(6): 579–87.
24. PM, Leotta DF, Beach KW, Aliseda A. A longitudinal study of hemodynamics at the venous needle during hemodialysis. J Biomech Eng. 2014 Jan; 136(1): 011002.
25. T, Rai M, Agrawal N. Hemodynamic assessment of arteriovenous fistula using computational fluid dynamics: a review. J Vasc Access. 2022 Nov; 23(6): 743–57.
26. CJ, Sumam D. Blood flow through arteries. J Med Eng Technol. 2016; 40 (7–8): 255–67.
27. DN. Blood flow in arteries. Annu Rev Fluid Mech. 1997; 29: 399–434.
<https://doi.org/10.1146/annurev.fluid.29.1.399>
28. T, Cancilla M, Mathews B, Sumpio BE. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J Cell Physiol. 2007; 191(1): 45–53.
29. AG, Milsted A, Rittgers SE. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg. 2004; 40(5): 947–56.
30. A, Kumar S, Kim J, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020 Feb 4; 33(2): 108491.
<https://doi.org/10.1016/j.celrep.2020.108491>
<PubMed>
31. M, Hope MD, Dyverfeldt P, Saloner D. Comparison of four-dimensional flow MRI and computational fluid dynamics simulations in an arteriovenous fistula. Magn Reson Med. 2013; 70(2): 423–30.
32. E, Krishnamoorthy MK, Roy-Chaudhury P, Aragon M, Allon M, Han H-C. Computational simulations of disturbed flow-induced progression of venous neointimal hyperplasia in hemodialysis vascular access. Am J Physiol Heart Circ Physiol. 2022 Jun 1; 322(6): H993–H1004.
33. GT, Roy-Chaudhury P, Schwab SJ, et al. Venous stenosis in arteriovenous fistulas for hemodialysis: correlation with flow, hemodynamic, and clinical parameters. Kidney Int. 2009 Nov; 76(9): 969–75.
34. GT, Roy-Chaudhury P, Zhang J, et al. Arteriovenous fistula vascular remodeling: prospective analysis with quantitative magnetic resonance imaging. J Vasc Access. 2011; 12(1): 42–9.
35. PM, Leotta DF, Beach KW, Aliseda A. A longitudinal study of hemodynamics at the venous needle during hemodialysis. J Biomech Eng. 2013 Aug; 135(8): 081009.
<https://doi.org/10.1115/1.4023133>
<PubMed>
36. YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. Circulation. 2007 Jun 19; 115(24): 2933–43.
37. Y, Wen Z, Xu L, Cheng L, et al. Biomechanical factors in venous remodeling of arteriovenous fistulas: a computational analysis integrating cellular response. Front Physiol. 2023; 14: 1155679.
38. F, Walsh WR, Newport D. Numerical analysis of the effects of arteriovenous fistula configuration on hemodynamics. J Vasc Access. 2022 Jan; 23(1): 70–9.
39. A, Buckley C, Mackay TG, Hose DR. Investigation of hemodynamic stresses in an idealized arteriovenous dialysis fistula. Med Eng Phys. 2007; 29(9): 999–1006.
<https://doi.org/10.1016/j.medengphy.2006.10.018>
40. E, Zambanini A, Bressloff NW. Wall shear stress characteristics in arteriovenous fistulae: revisiting the potential causes of intimal hyperplasia. J Biomech. 2013; 46(5): 999–1006.
41. MK, Banerjee RK, Wang Y, et al. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 2008 Apr; 73(8): 987–95.
42. LD, Griffin P, Kavanagh EG, Walsh MT. Intimal hyperplasia in vascular access: the role of blood flow disturbance. J Vasc Access. 2015; 16(2): 77–83.
43. B, Remuzzi A. Hemodialysis vascular access: new insights into vascular pathophysiology and computational modeling. Semin Dial. 2011; 24(1): 69–77.
44. EE, de Jonge N, van der Laan AM, et al. Oscillatory shear stress affects endothelial cell morphology and function in an in vitro AVF model. J Vasc Surg. 2021 Apr; 73(4): 1374–82.
45. E, Soliveri L, Poloni S, Bozzetto M, Campiglio CE. Effects of high-frequency mechanical stimuli on flow-related vascular cell biology. Int J Artif Organs. 2024 Aug; 47(8): 590–601.
<https://doi.org/10.1177/03913988241268105>
<PubMed>
46. GT, Roy-Chaudhury P, Zambanini A, Bressloff NW. Arteriovenous fistula flow dynamics: impact of anastomosis angle. J Biomech. 2018 Jan 3; 66: 28–35.
47. G, Lu X, Baxter D, Wood NB, Xu XY. The influence of anastomosis angle on the flow patterns in a radio-cephalic arteriovenous fistula. Med Eng Phys. 2020 Feb; 76: 1–9.
48. F, Osswald M, Korten I, et al. Computational flow analysis in vascular access for hemodialysis. PLoS One. 2019; 14(9): e0221366.
49. ST, Roy-Chaudhury P, Wang Y, et al. Hemodynamic analysis of needle infiltration during hemodialysis. ASAIO J. 2010; 56(4): 287–93.
50. D, Barber T, Young T, Lawford PV, Hose DR. Computational hemodynamics of steady and pulsatile flow in an arteriovenous fistula used for hemodialysis access. Cardiovasc Eng Technol. 2013; 4(4): 346–59.
51. P, Bunmun P. Investigation of needle tip design and flow patterns in hemodialysis access using computational fluid dynamics. Biomed Eng Online. 2024; 23(1): 25.


