Acta Med. 2025, 68: 37-44
https://doi.org/10.14712/18059694.2025.17
Myosteatosis and Type 2 Diabetes Mellitus
References
1. AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16–31.
<https://doi.org/10.1093/ageing/afy169>
<PubMed>
2. HK, Kim CH. Quality Matters as Much as Quantity of Skeletal Muscle: Clinical Implications of Myosteatosis in Cardiometabolic Health. Endocrinol Metab (Seoul). 2021; 36(6): 1161–74.
<https://doi.org/10.3803/EnM.2021.1348>
<PubMed>
3. R, Addison O, Miljkovic I, et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020; 11: 963.
<https://doi.org/10.3389/fphys.2020.00963>
<PubMed>
4. I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care. 2010; 13(3): 260–4.
5. I, Murphy RA, Koster A, et al. Muscle Quality and Muscle Fat Infiltration in Relation to Incident Mobility Disability and Gait Speed Decline: the Age, Gene/Environment Susceptibility-Reykjavik Study. J Gerontol A Biol Sci Med Sci. 2015; 13(8): 1030–6.
<https://doi.org/10.1093/gerona/glv016>
<PubMed>
6. ; Summary of Revisions: Standards of Care in Diabetes – 2024. Diabetes Care. 2024; 47(Supplement_1): S5–S10.
<https://doi.org/10.2337/dc24-SREV>
<PubMed>
7. LS, Fabian J, Rospleszcz S, et al. Distribution patterns of intramyocellular and extramyocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and normoglycaemic controls. Diabetes Obes Metab. 2021; 23(8): 1868–78.
<https://doi.org/10.1111/dom.14413>
8. H, Tauchi S, Machann J, et al. Fat Distribution Patterns and Future Type 2 Diabetes. Diabetes. 2022; 71(9): 1937–45.
<https://doi.org/10.2337/db22-0315>
9. FP, Guo MJ, Yang Q, Li YY, Wang YG, Zhang M. Myosteatosis is associated with coronary artery calcification in patients with type 2 diabetes. World J Diabetes. 2024; 15(3): 429–39.
<https://doi.org/10.4239/wjd.v15.i3.429>
<PubMed>
10. LS, Fabian J, Rospleszcz S, et al. Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population. Eur J Radiol. 2018; 105: 261–8.
<https://doi.org/10.1016/j.ejrad.2018.06.023>
11. RF, Mancini MC. Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Braz J Phys Ther. 2007; 11(1): 83–9.
<https://doi.org/10.1590/S1413-35552007000100013>
12. JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977; 33(1): 159–74.
<https://doi.org/10.2307/2529310>
13. EH, Kim HK, Lee MJ, Bae SJ, Kim KW, Choe J. Association between type 2 diabetes and skeletal muscle quality assessed by abdominal computed tomography scan. Diabetes Metab Res Rev. 2022; 38(4): e3513.
<https://doi.org/10.1002/dmrr.3513>
14. I, Kuipers AL, Cvejkus R, et al. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity. 2016; 24(2): 476–82.
<https://doi.org/10.1002/oby.21328>
<PubMed>
15. I, Cauley JA, Wang PY, et al. Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity. 2013; 21(10): 2118–25.
<https://doi.org/10.1002/oby.20346>
<PubMed>
16. I, Kuipers AL, Cvejkus RK, et al. Hepatic and Skeletal Muscle Adiposity Are Associated with Diabetes Independent of Visceral Adiposity in Nonobese African-Caribbean Men. Metab Syndr Relat Disord. 2020; 18(6): 275–83.
<https://doi.org/10.1089/met.2019.0097>
<PubMed>
17. I, Kuipers AL, Kammerer CM, et al. Markers of inflammation are heritable and associated with subcutaneous and ectopic skeletal muscle adiposity in African ancestry families. Metab Syndr Relat Disord. 2011; 9(4): 319–26.
<https://doi.org/10.1089/met.2010.0133>
<PubMed>
18. Y, Yan J, Zhu H, et al. Low thigh muscle strength in relation to myosteatosis in patients with type 2 diabetes mellitus. Sci Rep. 2023; 13(1): 1957.
<https://doi.org/10.1038/s41598-022-24002-1>
<PubMed>
19. H, Kim DW, Ko Y, et al. Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myosteatosis: A new paradigm beyond sarcopenia. Ageing Res Rev. 2021; 70: 101398.
<https://doi.org/10.1016/j.arr.2021.101398>
20. DW, Kim KW, Ko Y, et al. Assessment of Myosteatosis on Computed Tomography by Automatic Generation of a Muscle Quality Map Using a Web-Based Toolkit: Feasibility Study. JMIR Med Inform. 2020; 8(10): e23049.
<https://doi.org/10.2196/23049>
<PubMed>
21. HK, Kim KW, Kim EH, et al. Age-related changes in muscle quality and development of diagnostic cutoff points for myosteatosis in lumbar skeletal muscles measured by CT scan. Clin Nutr. 2021; 40(6): 4022–8.
<https://doi.org/10.1016/j.clnu.2021.04.017>
22. G, Loumaye A, Leclercq IA. Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep. 2023; 6(2): 100963.
<https://doi.org/10.1016/j.jhepr.2023.100963>
<PubMed>
23. , JAMJL. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes. Int J Mol Sci. 2024; 25(10): 5488.
<https://doi.org/10.3390/ijms25105488>
<PubMed>
24. M, Jonker JT, Schoones J, et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol. 2012; 2012: 983814.
<https://doi.org/10.1155/2012/983814>
<PubMed>
25. A, Mazzolari A, Pedretti A, Vistoli G, Fumagalli L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules. 2023; 28(7): 3094.
<https://doi.org/10.3390/molecules28073094>
<PubMed>
26. I, Murphy RA, Brouwer IA, et al. Muscle Quality and Myosteatosis: Novel Associations with Mortality Risk: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol. 2016; 183(1): 53–60.
<https://doi.org/10.1093/aje/kwv153>
<PubMed>
27. K, Friedman B, Rekant J, Landers-Ramos R, Addison O. The effects of myosteatosis on skeletal muscle function in older adults. Physiol Rep. 2024; 12(9): e16042.
<https://doi.org/10.14814/phy2.16042>
<PubMed>
28. HC, Derrick SA, Maj M, et al. High-Fructose, High-Fat Diet Alters Muscle Composition and Fuel Utilization in a Juvenile Iberian Pig Model of Non-Alcoholic Fatty Liver Disease. Nutrients. 2021; 13(12): 4195.
<https://doi.org/10.3390/nu13124195>
<PubMed>
29. MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lausanne). 2022; 13: 898471.
<https://doi.org/10.3389/fendo.2022.898471>
<PubMed>
30. JC, McDaniel JL, Mora K, Villareal DT, Fontana L, Weiss EP. Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. J Appl Physiol (1985). 2012; 112(1): 79–85.
<https://doi.org/10.1152/japplphysiol.00355.2011>
<PubMed>
31. SJ, Joseph LJ, Brandauer J, Katzel LI, Hagberg JM, Ryan AS. Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab. 2007; 92(3): 880–6.
<https://doi.org/10.1210/jc.2006-2113>
32. R, Ezzatvar Y, Izquierdo M, García-Hermoso A. Effect of exercise on myosteatosis in adults: a systematic review and meta-analysis. J Appl Physiol (1985). 2021; 130(1): 245–55.
<https://doi.org/10.1152/japplphysiol.00738.2020>
33. MCM, Cheng YK, Cui C, et al. Biophysical and nutritional combination treatment for myosteatosis in patients with sarcopenia: a study protocol for single-blinded randomised controlled trial. BMJ Open. 2024; 14(1): e074858.
<https://doi.org/10.1136/bmjopen-2023-074858>
<PubMed>
34. J, Cui C, Chim YN, Yao H, Shi L, Xu J, et al. Vibration and β-hydroxy-β-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J Cachexia Sarcopenia Muscle. 2020; 11(2): 564–77.
<https://doi.org/10.1002/jcsm.12535>
<PubMed>
35. , RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010; 14(5): 362–6.
<https://doi.org/10.1007/s12603-010-0081-2>
<PubMed>
36. J, Fyfe JJ, Talevski J, et al. Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies. Diabetes Metab J. 2023; 47(6): 719–42.
<https://doi.org/10.4093/dmj.2023.0112>
<PubMed>
37. , GI, Atherton, P, Reeds DN, et al. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am J Clin Nutr. 2011; 93(2): 402–12.
<https://doi.org/10.3945/ajcn.110.005611>
<PubMed>
38. , B, Linge, J, Neeland IJ, et al. Effect of tirzepatide on body fat distribution pattern in people with type 2 diabetes. Diabetes Obes Metab. 2024; 26(6): 2446–55.
<https://doi.org/10.1111/dom.15566>



