Acta Med. 2025, 68: 37-44

https://doi.org/10.14712/18059694.2025.17

Myosteatosis and Type 2 Diabetes Mellitus

Lucian Batista de Oliveiraa,bID, Vanessa de Oliveira e SilvabID, Ítalo Caio Lopes JucábID, João Victor Gonçalves dos Santos Torresc, Maria Roseneide dos Santos TorresbID, Fabio MouradID, Francisco BandeiraaID

aDivision of Endocrinology and Diabetes, Agamenon Magalhães Hospital, Faculty of Medical Sciences, University of Pernambuco (UPE), Recife, Brazil
bMedical School of Universidade Federal de Campina Grande (UFCG), Campina Grande, Brazil
cFaculty of Medical Sciences, Unifacisa, Campina Grande, Brazil
dEndocrinology and Diabetes, University of Pernambuco, Recife, Brazil

Received March 5, 2025
Accepted August 9, 2025

References

1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16–31. <https://doi.org/10.1093/ageing/afy169> <PubMed>
2. Kim HK, Kim CH. Quality Matters as Much as Quantity of Skeletal Muscle: Clinical Implications of Myosteatosis in Cardiometabolic Health. Endocrinol Metab (Seoul). 2021; 36(6): 1161–74. <https://doi.org/10.3803/EnM.2021.1348> <PubMed>
3. Correa-de-Araujo R, Addison O, Miljkovic I, et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020; 11: 963. <https://doi.org/10.3389/fphys.2020.00963> <PubMed>
4. Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care. 2010; 13(3): 260–4.
5. Reinders I, Murphy RA, Koster A, et al. Muscle Quality and Muscle Fat Infiltration in Relation to Incident Mobility Disability and Gait Speed Decline: the Age, Gene/Environment Susceptibility-Reykjavik Study. J Gerontol A Biol Sci Med Sci. 2015; 13(8): 1030–6. <https://doi.org/10.1093/gerona/glv016> <PubMed>
6. American Diabetes Association Professional Practice Committee; Summary of Revisions: Standards of Care in Diabetes – 2024. Diabetes Care. 2024; 47(Supplement_1): S5–S10. <https://doi.org/10.2337/dc24-SREV> <PubMed>
7. Kiefer LS, Fabian J, Rospleszcz S, et al. Distribution patterns of intramyocellular and extramyocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and normoglycaemic controls. Diabetes Obes Metab. 2021; 23(8): 1868–78. <https://doi.org/10.1111/dom.14413>
8. Yamazaki H, Tauchi S, Machann J, et al. Fat Distribution Patterns and Future Type 2 Diabetes. Diabetes. 2022; 71(9): 1937–45. <https://doi.org/10.2337/db22-0315>
9. Liu FP, Guo MJ, Yang Q, Li YY, Wang YG, Zhang M. Myosteatosis is associated with coronary artery calcification in patients with type 2 diabetes. World J Diabetes. 2024; 15(3): 429–39. <https://doi.org/10.4239/wjd.v15.i3.429> <PubMed>
10. Kiefer LS, Fabian J, Rospleszcz S, et al. Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population. Eur J Radiol. 2018; 105: 261–8. <https://doi.org/10.1016/j.ejrad.2018.06.023>
11. Sampaio RF, Mancini MC. Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Braz J Phys Ther. 2007; 11(1): 83–9. <https://doi.org/10.1590/S1413-35552007000100013>
12. Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977; 33(1): 159–74. <https://doi.org/10.2307/2529310>
13. Kim EH, Kim HK, Lee MJ, Bae SJ, Kim KW, Choe J. Association between type 2 diabetes and skeletal muscle quality assessed by abdominal computed tomography scan. Diabetes Metab Res Rev. 2022; 38(4): e3513. <https://doi.org/10.1002/dmrr.3513>
14. Miljkovic I, Kuipers AL, Cvejkus R, et al. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity. 2016; 24(2): 476–82. <https://doi.org/10.1002/oby.21328> <PubMed>
15. Miljkovic I, Cauley JA, Wang PY, et al. Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity. 2013; 21(10): 2118–25. <https://doi.org/10.1002/oby.20346> <PubMed>
16. Miljkovic I, Kuipers AL, Cvejkus RK, et al. Hepatic and Skeletal Muscle Adiposity Are Associated with Diabetes Independent of Visceral Adiposity in Nonobese African-Caribbean Men. Metab Syndr Relat Disord. 2020; 18(6): 275–83. <https://doi.org/10.1089/met.2019.0097> <PubMed>
17. Miljkovic I, Kuipers AL, Kammerer CM, et al. Markers of inflammation are heritable and associated with subcutaneous and ectopic skeletal muscle adiposity in African ancestry families. Metab Syndr Relat Disord. 2011; 9(4): 319–26. <https://doi.org/10.1089/met.2010.0133> <PubMed>
18. Huang Y, Yan J, Zhu H, et al. Low thigh muscle strength in relation to myosteatosis in patients with type 2 diabetes mellitus. Sci Rep. 2023; 13(1): 1957. <https://doi.org/10.1038/s41598-022-24002-1> <PubMed>
19. Ahn H, Kim DW, Ko Y, et al. Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myosteatosis: A new paradigm beyond sarcopenia. Ageing Res Rev. 2021; 70: 101398. <https://doi.org/10.1016/j.arr.2021.101398>
20. Kim DW, Kim KW, Ko Y, et al. Assessment of Myosteatosis on Computed Tomography by Automatic Generation of a Muscle Quality Map Using a Web-Based Toolkit: Feasibility Study. JMIR Med Inform. 2020; 8(10): e23049. <https://doi.org/10.2196/23049> <PubMed>
21. Kim HK, Kim KW, Kim EH, et al. Age-related changes in muscle quality and development of diagnostic cutoff points for myosteatosis in lumbar skeletal muscles measured by CT scan. Clin Nutr. 2021; 40(6): 4022–8. <https://doi.org/10.1016/j.clnu.2021.04.017>
22. Henin G, Loumaye A, Leclercq IA. Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep. 2023; 6(2): 100963. <https://doi.org/10.1016/j.jhepr.2023.100963> <PubMed>
23. Janssen, JAMJL. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes. Int J Mol Sci. 2024; 25(10): 5488. <https://doi.org/10.3390/ijms25105488> <PubMed>
24. Snel M, Jonker JT, Schoones J, et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol. 2012; 2012: 983814. <https://doi.org/10.1155/2012/983814> <PubMed>
25. Artasensi A, Mazzolari A, Pedretti A, Vistoli G, Fumagalli L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules. 2023; 28(7): 3094. <https://doi.org/10.3390/molecules28073094> <PubMed>
26. Reinders I, Murphy RA, Brouwer IA, et al. Muscle Quality and Myosteatosis: Novel Associations with Mortality Risk: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol. 2016; 183(1): 53–60. <https://doi.org/10.1093/aje/kwv153> <PubMed>
27. Dondero K, Friedman B, Rekant J, Landers-Ramos R, Addison O. The effects of myosteatosis on skeletal muscle function in older adults. Physiol Rep. 2024; 12(9): e16042. <https://doi.org/10.14814/phy2.16042> <PubMed>
28. Spooner HC, Derrick SA, Maj M, et al. High-Fructose, High-Fat Diet Alters Muscle Composition and Fuel Utilization in a Juvenile Iberian Pig Model of Non-Alcoholic Fatty Liver Disease. Nutrients. 2021; 13(12): 4195. <https://doi.org/10.3390/nu13124195> <PubMed>
29. Meneses MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lau­sanne). 2022; 13: 898471. <https://doi.org/10.3389/fendo.2022.898471> <PubMed>
30. Murphy JC, McDaniel JL, Mora K, Villareal DT, Fontana L, Weiss EP. Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. J Appl Physiol (1985). 2012; 112(1): 79–85. <https://doi.org/10.1152/japplphysiol.00355.2011> <PubMed>
31. Prior SJ, Joseph LJ, Brandauer J, Katzel LI, Hagberg JM, Ryan AS. Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab. 2007; 92(3): 880–6. <https://doi.org/10.1210/jc.2006-2113>
32. Ramírez-Vélez R, Ezzatvar Y, Izquierdo M, García-Hermoso A. Effect of exercise on myosteatosis in adults: a systematic review and meta-analysis. J Appl Physiol (1985). 2021; 130(1): 245–55. <https://doi.org/10.1152/japplphysiol.00738.2020>
33. Li MCM, Cheng YK, Cui C, et al. Biophysical and nutritional combination treatment for myosteatosis in patients with sarcopenia: a study protocol for single-blinded randomised controlled trial. BMJ Open. 2024; 14(1): e074858. <https://doi.org/10.1136/bmjopen-2023-074858> <PubMed>
34. Wang J, Cui C, Chim YN, Yao H, Shi L, Xu J, et al. Vibration and β-hydroxy-β-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J Cachexia Sarcopenia Muscle. 2020; 11(2): 564–77. <https://doi.org/10.1002/jcsm.12535> <PubMed>
35. Marcus, RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010; 14(5): 362–6. <https://doi.org/10.1007/s12603-010-0081-2> <PubMed>
36. Mesinovic J, Fyfe JJ, Talevski J, et al. Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies. Diabetes Metab J. 2023; 47(6): 719–42. <https://doi.org/10.4093/dmj.2023.0112> <PubMed>
37. Smith, GI, Atherton, P, Reeds DN, et al. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am J Clin Nutr. 2011; 93(2): 402–12. <https://doi.org/10.3945/ajcn.110.005611> <PubMed>
38. Cariou, B, Linge, J, Neeland IJ, et al. Effect of tirzepatide on body fat distribution pattern in people with type 2 diabetes. Diabetes Obes Metab. 2024; 26(6): 2446–55. <https://doi.org/10.1111/dom.15566>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive