Acta Med. 2025, 68: 8-13
https://doi.org/10.14712/18059694.2025.12
Treatment of Chondral Defect of the Knee Joint – Current Methods, Possibilities of Using Cultured Mesenchymal Stem Cells
References
1. Lüllmann-Rauch R. Histologie. Praha: Grada Publishing, 2012; 122–5.
2. TM, Stahl R. Woertler K. Cartilageimaging: motivation, techniques, current and future signifikance. Eur Radiology 2007; 17: 1135–46.
<https://doi.org/10.1007/s00330-006-0453-5>
3. TM. MR Imaging in Osteoartritis: Hardware, Coils and Sequences. Radiol Clin North Am. 2009; 47: 617–32.
<https://doi.org/10.1016/j.rcl.2009.04.002>
4. D, Gray M. New MRI techniques for paging cartilage. J Bone Joint Surg Am. 2003; 85: 70–7.
<https://doi.org/10.2106/00004623-200300002-00009>
5. DR, Watt I. Imaging hyaline cartilage. Br J Radiol. 2003; 73: 777–87.
<https://doi.org/10.1259/bjr/51504520>
6. E, Toffanin R, Guglielmi G, et al. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imagingat 1.5T: validation and initial clinical experience in patiens with osteoarthritis. Skeletal Radiol. 2008; 37: 511–7.
<https://doi.org/10.1007/s00256-008-0478-8>
7. MV, Waarsing JH, Brouwer RW, et al. Is a high tibial osteotomy (HTO) superior to non-surgical treatment in patiens with varus malaligned medial knee osteoarthritis (OA)? A propensity matched study using 2 randomized contolled trial (RCT) datasets. Osteoarthritis Cartilage. 2017; 25: 1988–93.
<https://doi.org/10.1016/j.joca.2017.09.003>
8. KI, Seo MC, Song SJ, et al. Change of Chondral Lesions and Predictive Factors After Medial Open-Wedge High Tibial Osteotomy With a Locked Plate System. Am J Sports Med. 2017; 45: 1615–21.
<https://doi.org/10.1177/0363546517694864>
9. LL. Arthroscopic abrasion arthroplasty historici and pathologic perspective: Present status. Arthroscopy. 1986; 2: 54–69.
<https://doi.org/10.1016/S0749-8063(86)80012-3>
10. KW. A Method of Resurfacing Osteoarhritic Knee Joint. J Bone Jt Surg. 1959; 41-B: 211–28.
11. RP, Ficat C, Gedeon P. Spongialisation: Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979; Oct(144): 74–83.
12. JR, Rodkey WG, Rodrigo JJ. Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clin Orthop. 2001; 391: 362–9.
<https://doi.org/10.1097/00003086-200110001-00033>
13. BM, Leroux T, Cole BJ. Management and Surgical Options for Articular Defects in the Shoulder. Clin Sports Med. 2017; 36(3): 549–72.
<https://doi.org/10.1016/j.csm.2017.02.009>
14. M, Jordan M, Hamborg-Petersen E. Arthroscopic Treatment of Chondral Lesions of the Ankle Joint. Evidence-BasedTherapy. Der Unfallchirurg. 2016; 119(2): 100–8.
<https://doi.org/10.1007/s00113-015-0136-2>
15. L, Menche D, Grande D. Chondrocyte Transplantation – an Experimental Model in the Rabbit. Trans Orthop Res Soc. 1984; 9: 218.
16. M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N Engl J Med. 1994; 331(14): 889–95.
<https://doi.org/10.1056/NEJM199410063311401>
17. YJ, Esser T, Seyam A, et al. Low Postoperative Complication Rate with High Survival Rate and Good Clinical Outcome 9 Years after Autologous Chondrocyte Transplantation of the Knee Joint. Arch Orthop Trauma Surg. 2023; 143(5): 2665–74.
<https://doi.org/10.1007/s00402-022-04611-1>
<PubMed>
18. L, Ráthonyi GK, Duska Z, et al. Autologous Osteochondral Mosaicplasty. J Bone Jt Surg. 2004; 86(Suppl 1): 65–72.
<https://doi.org/10.2106/00004623-200403001-00009>
19. L, Vásárhelyi G, Hangody LR, et al. Autologous Osteochondral Grafting-Technique and Long-Term Results. Injury. 2008; 39(Suppl 1): 32–9.
<https://doi.org/10.1016/j.injury.2008.01.041>
20. VH, Flanigan DC. New and emerging techniques in cartilage repair: other scaffold-based cartilage treatment options. Oper Tech Sports Med. 2013; 21: 125–37.
<https://doi.org/10.1053/j.otsm.2013.03.001>
21. KF, Struewer J, Rominger MB, Rexin P, Efe T. Repair of a chondral defect using a cell free scaffold in a young patient – a case report of successful scaffold transformation and colonisation. BMC Surgery. 2013; Apr 16(13): 11.
<https://doi.org/10.1186/1471-2482-13-11>
<PubMed>
22. MR, Gille J, Volz M, et al. Systematic Review and Meta-Analysis of the Clinical Evidence on the Use ofAutologous Matrix-Induced Chondrogenesis in the Knee. Cartilage. 2019 Dec; 13(Suppl 1): 42S–56S.
23. T, Vališ P, Rouchal M, Novák J, Repko M, Šprláková-Puková A. Two-year Result of Modified AMIC Technice for Treatment of Cartilage Defects of the Knee. Acta Chir Orthop Traumatol Cech. 2020; 3: 167–74.
<https://doi.org/10.55095/achot2020/028>
24. S, Kanno M, Miharada K, et al. Mesenchymal Progenitors Able to Differentiate into Osteogenic, Chondrogenic, and/or Adipogenic Cells in Vitro Are Present in Most Primary Fibroblast-like Cell Populations. Stem Cells (Dayton, Ohio) 2007; 25(7): 1610–17.
25. LA, Potter HG, Rickey EJ, et al. Concentrated Bone Marrow Aspirate Improves Full-Thickness Cartilage Repair Compared with Microfracture in the Equine Model. J Bone Joint Surg Am. 2010; 92(10): 1927–37.
<https://doi.org/10.2106/JBJS.I.01284>
26. A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions: Resultsat 2-Year Follow-Up. Cartilage. 2011; 2(3): 286–99.
<https://doi.org/10.1177/1947603510392023>
<PubMed>
27. H, Hui JH, Choong EPF, Tai BCH, Lee EH. Autologous Bone Marrow-Derived Mesenchymal Stem Cells versus Autologous Chondrocyte Implantation: An Observational Cohort Study. Am J Sports Med. 2010; 38(6): 1110–6.
<https://doi.org/10.1177/0363546509359067>
28. V, Kos P, Jendelová P, Lesný P, Trč T, Syková E. Comparison of Chondrogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells with Cultured Chondrocytes and Bone Marrow Mesenchymal Stem Cells. Acta Chir Orthop Traumatol Cech. 2011; 78(2): 138–44.
<https://doi.org/10.55095/achot2011/022>
29. OlS, Darling EM. Isolation, Characterization, and Differentiation of Stem Cells for Cartilage Regeneration. Ann Biomed Eng. 2012; 40(10): 2079–97.
<https://doi.org/10.1007/s10439-012-0639-8>
<PubMed>
30. FP, Vanlauwe J. Tissue engineering approaches for osteoarthritis. Bone. 2012; 51: 289–96.
<https://doi.org/10.1016/j.bone.2011.10.007>
31. K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical Efficacy of the Microfracture Technique for Articular Cartilage Repair in the Knee An evidence-based systematic analysis. Am J Sports Med. 2009; 37: 2053–63.
<https://doi.org/10.1177/0363546508328414>
32. DL, Schenck RC, Wascher DC, Treme G. Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature. Sports Health. 2016; 8(2): 153–60.
<https://doi.org/10.1177/1941738115611350>
<PubMed>
33. E, Trč T, Philippou T, Přidal J, Bělík D. Management of da- maged articular cartilage and osteoarthritis – surgical treatment. Internal Med. 2018; 20(1): 32–7.
34. G, Dereymaeker G, Frank L. Donor Site Morbidity after Articular Cartilage Repair Procedures: A Review Acta Orthop Belg. 2010 Oct; 76(5): 669–74.
35. Neckař P. Modern therapy of chondral joint defects (Doctoral dissertation). Prague: Charles University, 2023; 57–8.



