Acta Med. 2024, 67: 107-112
https://doi.org/10.14712/18059694.2025.7
Deleterious Effect of Fructose on the Heart Function of Hypertriglyceridemic Rats
References
1. GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004; 79: 537–43.
<https://doi.org/10.1093/ajcn/79.4.537>
2. JO, Sanches IC, Bernardes N, et al. Hypertension induces additional cardiometabolic impairments and attenuates aerobic exercise training adaptations in fructose-fed ovariectomized rats. Hypertens Res. 2018; 41: 88–95.
<https://doi.org/10.1038/hr.2017.94>
3. Z, Knezl V, Sotnikova R, Gasparova Z. Metabolic syndrome in hypertriglyceridemic rats: Effects of antioxidants. Physiol Res. 2023; 72(suppl 1): 31–5.
<https://doi.org/10.33549/physiolres.935021>
<PubMed>
4. S-S, Salmen T, Pana M-A, Rizzo M, Stallone T, Papanas N, Popovic DR, Tanasescu D, Serban D, Stoian AP. The role of fructose as a cardiovascular risk factor: An update. Metabolites. 2022; 12: 67.
<https://doi.org/10.3390/metabo12010067>
<PubMed>
5. AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent developments in rodent models of high-fructose diet-induced metabolic syndrome: A systematic review. Nutrients. 2021; 13: 2497.
<https://doi.org/10.3390/nu13082497>
<PubMed>
6. DJ, Lei B, Hoit BD, Azimzadeh AM, Stanley WC. Deleterious effects of sugar and protective effects of starch on cardiac remodeling, contractile dysfunction, and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol. 2007; 293: H1853–60.
<https://doi.org/10.1152/ajpheart.00544.2007>
7. RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MAR. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. British J Nutr. 2009; 101: 1178–84.
<https://doi.org/10.1017/S0007114508066774>
8. HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990; 186: 421–31.
<https://doi.org/10.1016/0076-6879(90)86135-I>
9. YJ, Rodrigues-Malaver AJ, Panaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebelar slices. J Neurosci Methods. 2005; 144: 127–35.
<https://doi.org/10.1016/j.jneumeth.2004.10.018>
10. SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. Am J Coll Cardiol. 2006; 47: 1093–100.
<https://doi.org/10.1016/j.jacc.2005.11.046>
11. SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018; 128: 545–55.
<https://doi.org/10.1172/JCI96702>
<PubMed>
12. KEL, Visser ME, Kastelein JJP, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. Curr Cardiol Rev. 2009; 5: 216–22.
<https://doi.org/10.2174/157340309788970315>
<PubMed>
13. LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep. 2016; 6: 27460.
<https://doi.org/10.1038/srep27460>
<PubMed>
14. B, Lipták B, Slovák L, Švík K, Knezl V, Sotníková R, Gáspárová Z. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome. Physiol Res. 2016; 65(suppl 4): 515–8.
<https://doi.org/10.33549/physiolres.933524>
15. V, Sotníková R, Brnoliaková Z, Stankovičová T, Bauer V, Bezek S. Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects. Interdiscip Toxicol. 2017; 10: 86–92.
<https://doi.org/10.1515/intox-2017-0014>
<PubMed>
16. R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc Drugs Ther. 2018; 32: 147–63.
<https://doi.org/10.1007/s10557-018-6780-3>
17. U, Bohm M, Weingartner O, Werner C, Custodis F, Poss J. Cardio- vascular disease and dyslipidemia: beyond LDL. Curr Pharm Design. 2011; 17: 861–70.
18. AM, Rodrigues B, Irigoyen MC, De Angelis K, D’Agord Schaan B. Cardiovascular changes in animal models of metabolic syndrome. J Diabet Res. 2013; Article ID 761314.
19. DF, Andrade JMO, Almenara CCP, Brosequini-Filho GB, Mill JG, Baldo MP. High-fructose intake and the route towards cardiometabolic diseases. Life Sci. 2020; 259: 118235.
<https://doi.org/10.1016/j.lfs.2020.118235>
20. B, Kaprinay B, Gáspárová Z. A rat-friendly modification of the non-invasive tail-cuff to record blood pressure. Lab Animal. 2017; 46: 251–3.
<https://doi.org/10.1038/laban.1272>
21. GJ, Mendham AE, Lamont K, George C. Review of a causal role of fructose-containing sugars in myocardial susceptibility to ischemia/reperfusion injury. Nutr Res. 2017; 42: 11–9.
<https://doi.org/10.1016/j.nutres.2017.03.003>
22. FJ, Rizza RA, Romero JC. High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension. 1994; 23: 456–63.
<https://doi.org/10.1161/01.HYP.23.4.456>
23. P, Jang C, Arany Z, Krek W. Fructose metabolism, cardio- metabolic risk, and the epidemic of coronary artery disease. Eur J Heart. 2018; 39: 2497–505.
<https://doi.org/10.1093/eurheartj/ehx518>
<PubMed>
24. BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014; 384: 626–35.
<https://doi.org/10.1016/S0140-6736(14)61177-6>
25. A, Stanhope KL, Imbeault P. Are fruit juices healthier than sugar-sweetened beverages. A review. Nutrients. 2019; 11: 1006.
<https://doi.org/10.3390/nu11051006>
<PubMed>
26. T, Held C, Westerbergh J, Lindbäck J, Alexander JH, Alings M, Erol C, Goto S, Halvorsen S, Huber K, Hanna M, Lopes RD, Ruzyllo W, Granger CB, Hijazi Z. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. J Am Heart Assoc. 2018; 7: e007444.
<https://doi.org/10.1161/JAHA.117.007444>
<PubMed>
27. E, Weiskirchen R. Fructose and non-alcoholic steatohepatitis. Front Pharmacol. 2021; 12: 634344.
<https://doi.org/10.3389/fphar.2021.634344>
<PubMed>
28. DCC, Punaro GR, de Oliveira Fernandes T, Ginoza M, Lopes GS, Higa EMS. Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. Exp Gerontol. 2017; 99: 53–60.
<https://doi.org/10.1016/j.exger.2017.09.011>
29. L. Fructose-induced alteration of the heart and vessels homeostasis. Curr Probl Cardiol. 2023; 4(2): 101013.
<https://doi.org/10.1016/j.cpcardiol.2021.101013>
30. V, Casiglia E, Virdis A, et al. Prognostic value and relative cutoffs of triglycerides predicting cardiovascular ourcome in a large regional-based italian database. J Am Heart Assoc. 2024; 13: e030319.
<https://doi.org/10.1161/JAHA.123.030319>
<PubMed>
31. Özen S, Palabıyık O, Guksu Z, Arslan E, Akbaş Tosunoğlu E, Süt N, Vardar SA. The effect of high-fructose feeding on hemodynamic behavior and infarct size of isolated rat hearts subjected to low-flow ischemia. Genel Tip Derg. 2022; 32: 324–9.
<https://doi.org/10.54005/geneltip.1095947>
32. JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017; 183: 57–70.
<https://doi.org/10.1016/j.trsl.2017.01.001>
<PubMed>
33. A, Nordestgaard BG. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2016; 36: 2133–5.
<https://doi.org/10.1161/ATVBAHA.116.308305>
34. N, Vlkovicova J, Snurikova D, Kalocayova B, Zorad S, Culafic T, Tepavcevic S, Tothova L, Radosinska D, Kollarova M, Radosinska J. Alterations in oxidative stress markers and Na, K-ATPase enzyme properties in kidney after fructose intake and quercetin intervention in rats. Life. 2023; 13: 931.
<https://doi.org/10.3390/life13040931>
<PubMed>
35. S-S, Bi X-P, Tan H-W, Yhang Y, Xing Q-C, Zhang W. Overexpression of interleukin-18 aggravates cardiac fibrosis and diastolic dysfunction in fructose-fed rats. Mol Med. 2010; 16: 465–70.
<https://doi.org/10.2119/molmed.2010.00028>
<PubMed>
36. C, Yu J. Pathophysiological mechanisms of hypertension development induced by fructose consumption. Food Funct. 2022; 13: 1702–17.
<https://doi.org/10.1039/D1FO03381F>
37. X, Xu Z, Chang R, Zeng C, Zhao Y. High-fructose diet induces cardiac dysfunction via macrophage recruitment in adult mice. J Cardiovasc Pharmacol and Therapeut. 2023; 28: 1–11.
<https://doi.org/10.1177/10742484231162249>
38. DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006; 174: 801–9.
<https://doi.org/10.1503/cmaj.051351>
<PubMed>
39. PWF, D’Agostino RBD, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005; 112: 3066–72.
<https://doi.org/10.1161/CIRCULATIONAHA.105.539528>
40. Y, Zhang L, Zhang Y, Xu JJ, Sun LL, Li SZ. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-kappaB and MAPK signaling pathway. Biomed Pharmacother. 2016; 84: 1337–49.
<https://doi.org/10.1016/j.biopha.2016.10.036>
41. J, Pecháňová O, Čačányiová S, et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006; 55(suppl 1): 49–63.
<https://doi.org/10.33549/physiolres.930000.55.S1.49>


