Acta Med. 2024, 67: 101-106
https://doi.org/10.14712/18059694.2025.6
IgG4 Subclass of Immunoglobulins; Immunobiology and Roles in Relation to Human Diseases
References
1. M, Kozicky LK, Gandhi AK, et al. The therapeutic age of the neonatal Fc receptor. Nature Rev Immunol. 2023; 23: 415–32.
<https://doi.org/10.1038/s41577-022-00821-1>
<PubMed>
2. G, Dekkers G, Rispens T. IgG subclasses and allotypes from structure to effector functions. Front Immunol. 2014; 5: 520.
<https://doi.org/10.3389/fimmu.2014.00520>
<PubMed>
3. S, Navarro BGS, Cakan E, et al. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol. 2024; 15: 1346671.
<https://doi.org/10.3389/fimmu.2024.1346671>
<PubMed>
4. T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nature Rev Immunol. 2023; 23: 763–78.
<https://doi.org/10.1038/s41577-023-00871-z>
<PubMed>
5. M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007; 317: 1554–7.
<https://doi.org/10.1126/science.1144603>
6. S. Is it bad, is it good, or is IgG4 just misunderstood? Sci Immunol. 2023; 8: eadg7327.
<https://doi.org/10.1126/sciimmunol.adg7327>
7. RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol. 2024; 15: 1272084.
<https://doi.org/10.3389/fimmu.2024.1272084>
<PubMed>
8. RA, Shlomchik MJ. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity. 2020; 53(6): 1136–50.
<https://doi.org/10.1016/j.immuni.2020.11.006>
<PubMed>
9. M, Kinoshita K, Fagarasan S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000; 102(5): 553–63.
<https://doi.org/10.1016/S0092-8674(00)00078-7>
10. PPA, Lighaam LC, Vermeulen E, et al. Divergent chemokine receptor expression and the consequence for human IgG4 B cell responses. Eur J Immunol. 2020; 50: 1113–25.
<https://doi.org/10.1002/eji.201948454>
11. M, Alshehri W, Ishigaki S, et al. Human T follicular helper cells and their impact on IgE and IgG4 production across allergy, malignancy, and IgG4-related disease. Allergol Int. 2025; 74(1): 25–32.
<https://doi.org/10.1016/j.alit.2024.07.005>
12. RS, Knorr DA, Vella LA, et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat Immunol. 2022; 23: 1183–92.
<https://doi.org/10.1038/s41590-022-01274-3>
<PubMed>
13. KA, Powell MD, Baker CE, et al. Integrated STAT3 and Ikaros zinc finger transcription factor activities regulate Bcl-6 expression in CD4+ Th cells. J Immunol. 2017; 199: 2377–87.
<https://doi.org/10.4049/jimmunol.1700106>
<PubMed>
14. T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol. 2023; 23: 763–778.
<https://doi.org/10.1038/s41577-023-00871-z>
<PubMed>
15. IR, Campi-Azevedo AC, Oliveira LFA, et al. Human Schistosomiasis mansoni: immune responses during acute and chronic phases of the infection. Acta Trop. 2008; 108: 109–17.
<https://doi.org/10.1016/j.actatropica.2008.05.027>
16. M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014; 133: 621–31.
<https://doi.org/10.1016/j.jaci.2013.12.1088>
17. F, Zumkehr J, Klunker S, et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med. 2008; 205: 2887–98.
<https://doi.org/10.1084/jem.20080193>
<PubMed>
18. DC. IgG4 immunodeficiency. N Engl Reg Allergy Proc. 1988; 9: 43–50.
<https://doi.org/10.2500/108854188778984509>
19. I, Tzartos J, Mané-Damas M, et al. IgG4 autoantibodies in organ-specific autoimmunopathies: Reviewing class switching, antibody-producing cells, and specific immunotherapies. Front Immunol. 2022; 13: 834342.
<https://doi.org/10.3389/fimmu.2022.834342>
<PubMed>
20. ZS, Katz G, Hernandez-Barco YG, et al. Current and future advances in practice: IgG4-related disease. Rheumatol Advances Practice. 2024; 8(2): rkae020.
<https://doi.org/10.1093/rap/rkae020>
<PubMed>
21. NE. Myasthenia gravis. N Engl J Med. 2016; 375: 2570–81.
<https://doi.org/10.1056/NEJMra1602678>
22. I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev. 2020; 19: 102646.
<https://doi.org/10.1016/j.autrev.2020.102646>
23. J, Farrugia ME, Beeson D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004; 55: 580–4.
<https://doi.org/10.1002/ana.20061>
24. CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol. 2020; 16: 702–14.
<https://doi.org/10.1038/s41584-020-0500-7>
25. ZS, Naden RP, Chari S, et al. American College of Rheumatology / European League Against Rheumatism IgG4-Related Disease Classification Criteria Working Group: The 2019 American College of Rheumatology / European League Against Rheumatism Classification Criteria for IgG4-Related Disease. Arthritis Rheumatol. 2020; 72(1): 7–19.
<https://doi.org/10.1002/art.41120>
26. M, Alshehri W, Ishigaki S, et al. The immunological pathogenesis of IgG4-related disease categorized by clinical characteristics. Immunol Med. 2025; 48(1): 11–23.
<https://doi.org/10.1080/25785826.2024.2407224>
27. M. IgG4-related disease: recent topics on immunological aspects of this disorder and their application in new treatment strategies. Intern Med. 2025; 64(1): 31–39.
<https://doi.org/10.2169/internalmedicine.3154-23>
<PubMed>
28. M, Kostyra-Grabczak K. Immunoglobulin G4 in primary Sjogren’s syndrome and IgG4-related disease – connections and dissimilarities. Front Immunol. 2024; 15: 1376723.
<https://doi.org/10.3389/fimmu.2024.1376723>
<PubMed>
29. LYC, Mattman A, Seidman MA, et al. IgG4-related disease: what a hematologist needs to know. Haematologica. 2019; 104(3): 444–55.
<https://doi.org/10.3324/haematol.2018.205526>
<PubMed>
30. M, Saillard M, Romero P, et al. The era of cytotoxic CD4 T cells. Front Immunol. 2022; 13: 867189.
<https://doi.org/10.3389/fimmu.2022.867189>
<PubMed>


