Acta Med. 2024, 67: 113-124

https://doi.org/10.14712/18059694.2025.8

Updated Meta-Analysis of VDR FokI and TaqI Variants and Their Association with Melanoma Risk

Nazila Farnousha, Mehdi Khosravi-Mashizib, Amirhossein RahmanicID, Maedeh Barahmand, Sepideh Soleymanib, Fatemeh Asadiane, Ahmad Shirinzadeh-Dastgirif, Mohammad Vakili-Ojaroodg, Seyed Masoud HaghighiKianb, Amirhosein Naserih, Maryam Aghasipouri, Amirmasoud Shirij, Kazem Aghilik, Hossein Neamatzadehl

aDepartment of General Surgery, Babol University of Medical Sciences, Babol, Iran
bDepartment of General Surgery, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
cDepartment of Plastic Surgery, Iranshahr University of Medical Sciences, Iranshahr, Iran
dDepartment of Radiation Oncology, Firoozgar Clinical Research Development Center (FCRDC), Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
eDepartment of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
fDepartment of Surgery, School of Medicine, Shohadaye Haft-e Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
gDepartment of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
hDepartment of Colorectal Surgery, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
iDepartment of Cancer Biology, College of Medicine, University of Cincinnati, Ohio, USA
jStudent Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
kDepartment of Radiology, Shahid Rahnamoun Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
lMother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Received March 6, 2024
Accepted February 24, 2025

References

1. Wagstaff W, Mwamba RN, Grullon K, et al. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis. 2022; 9(6): 1608–23. <https://doi.org/10.1016/j.gendis.2022.04.004> <PubMed>
2. Asadian F, Niktabar SM, Ghelmani Y, et al. Association of XPC Poly- morphisms with Cutaneous Malignant Melanoma Risk: Evidence from a Meta-Analysis. Acta Medica (Hradec Kral). 2020; 63(3): 101–12.
3. Arnold M, Singh D, Laversanne M, et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology. 2022; 158(5): 495. <https://doi.org/10.1001/jamadermatol.2022.0160> <PubMed>
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. <https://doi.org/10.3322/caac.21492>
5. Wunderlich K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers (Basel). 2024; 16(5): 1016. <https://doi.org/10.3390/cancers16051016> <PubMed>
6. Lewandowska A, Lewandowski T, Rudzki G, et al. The Risk of Melanoma due to Exposure to Sun and Solarium Use in Poland: A Large-Scale, Hospital Based Case – Control Study. Asian Pac J Cancer Prev. 2023; 24(7): 2259. <https://doi.org/10.31557/APJCP.2023.24.7.2259> <PubMed>
7. Gawkrodger DJ. Occupational skin cancers. Occup Med (Chic Ill). 2004; 54(7): 458–463. <https://doi.org/10.1093/occmed/kqh098>
8. Roider EM, Fisher DE. Red hair, light skin, and UV-independent risk for melanoma development in humans. JAMA Dermatology. 2016; 152(7): 751. <https://doi.org/10.1001/jamadermatol.2016.0524> <PubMed>
9. Niktabar SMR, Dastgheib SA, Heiranizadeh N, et al. Association of XPG rs17655G>C and XPF rs1799801T>C Polymorphisms with Susceptibility to Cutaneous Malignant Melanoma: Evidence from a Case-Control Study, Systematic Review and Meta-Analysis. Klin Onkol. 2020; 33(3): 184–94.
10. Raimondi S, Suppa M, Gandini S. Melanoma Epidemiology and Sun Exposure. Acta Derm Venereol. 2020; 100(11): 5746. <https://doi.org/10.2340/00015555-3491> <PubMed>
11. Hashemzehi A, Ghadyani M, Asadian F, et al. Association of polymorphisms in nucleotide excision repair pathway genes with susceptibility to cutaneous melanoma. Klin Onkol. 2021; 34(5): 350–55. <https://doi.org/10.48095/ccko2021350>
12. Jiyad Z, Olsen CM, Burke MT, Isbel NM, Green AC. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am J Transplant. 2016; 16(12): 3490–503. <https://doi.org/10.1111/ajt.13863>
13. Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol. 2022; 79: 217–30. <https://doi.org/10.1016/j.semcancer.2020.05.018>
14. Crew KD. Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment? Int Sch Res Not. 2013; 2013(1): 483687.
15. Gallyas Jr F, Alexandru A, Ivan CS, et al. Are Pediatric Cancer Patients a Risk Group for Vitamin D Deficiency? A Systematic Review. Cancers. 2024; 16(24): 4201.
16. Sarathi V, Dhananjaya MS, Karlekar M, Lila AR. Vitamin D deficiency or resistance and hypophosphatemia. Best Pract Res Clin Endocrinol Metab. 2024; 38(2): 101876. <https://doi.org/10.1016/j.beem.2024.101876>
17. Mashhadiabbas F, Neamatzadeh H, Nasiri R, et al. Association of vitamin D receptor BsmI, TaqI, FokI, and ApaI polymorphisms with susceptibility of chronic periodontitis: A systematic review and meta-analysis based on 38 case-control studies. Dent Res J. 2018; 15(3): 155–65.
18. Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci. 2020; 21(24): 1–24. <https://doi.org/10.3390/ijms21249626> <PubMed>
19. Slominski AT, Brozyna AA, Zmijewski MA, et al. Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Investig. 2017; 97(6): 706–24. <https://doi.org/10.1038/labinvest.2017.3> <PubMed>
20. Podgorska E, Kim TK, Janjetovic Z, et al. Knocking out the vitamin d receptor enhances malignancy and decreases responsiveness to vitamin d3 hydroxyderivatives in human melanoma cells. Cancers (Basel). 2021; 13(13): 3111. <https://doi.org/10.3390/cancers13133111> <PubMed>
21. Becker AL, Carpenter EL, Slominski AT, Indra AK. The Role of the Vitamin D Receptor in the Pathogenesis, Prognosis, and Treatment of Cutaneous Melanoma. Front Oncol. 2021; 11: 743667. <https://doi.org/10.3389/fonc.2021.743667> <PubMed>
22. Campbell MJ, Trump DL. Vitamin D Receptor Signaling and Cancer. Endocrinol Metab Clin North Am. 2017; 46(4): 1009. <https://doi.org/10.1016/j.ecl.2017.07.007> <PubMed>
23. Usategui-Martín R, De Luis-Román DA, Fernández-Gómez JM, Ruiz-Mambrilla M, Pérez-Castrillón JL. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(2): 360. <https://doi.org/10.3390/nu14020360> <PubMed>
24. Birke M, Schope J, Wagenpfeil S, Vogt T, Reichrath J. Association of Vitamin D Receptor Gene Polymorphisms With Melanoma Risk: A Meta-analysis and Systematic Review. Anticancer Res. 2020; 40(2): 583–95. <https://doi.org/10.21873/anticanres.13988>
25. Lee YH, Gyu Song G. Vitamin D receptor FokI, BsmI, TaqI, ApaI, and EcoRV polymorphisms and susceptibility to melanoma: a meta-analysis. J BUON. 2015; 20(1): 235–43.
26. Mocellin S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis. Cancer. 2008; 113(9): 2398–407. <https://doi.org/10.1002/cncr.23867>
27. Vasilovici AF, Grigore LE, Ungureanu L, et al. Vitamin D receptor poly- morphisms and melanoma. Oncol Lett. 2019; 17(5): 4162–9.
28. Hutchinson PE, Osborne JE, Lear JT, et al. Vitamin D receptor poly- morphisms are associated with altered prognosis in patients with malignant melanoma. Clin Cancer Res. 2000; 6(2): 498–504.
29. Santonocito C, Capizzi R, Concolino P, et al. Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br J Dermatol. 2007; 156(2): 277–82. <https://doi.org/10.1111/j.1365-2133.2006.07620.x>
30. Aristizábal-Pachón AF, González-Giraldo Y, García AY, Suarez DX, Rodríguez A, Gonzalez-Santos J. Association between VDR Gene Polymorphisms and Melanoma Susceptibility in a Colombian Population. Asian Pac J Cancer Prev. 2022; 23(1): 79–85. <https://doi.org/10.31557/APJCP.2022.23.1.79> <PubMed>
31. Han J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis. 2006; 28(2): 390–7. <https://doi.org/10.1093/carcin/bgl156>
32. Li C, Liu Z, Wang LE, et al. Haplotype and genotypes of the VDR gene and cutaneous melanoma risk in non-Hispanic whites in Texas: A case-control study. Int J Cancer. 2008; 122(9): 2077–84. <https://doi.org/10.1002/ijc.23357> <PubMed>
33. Randerson-Moor JA, Taylor JC, Elliott F, et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case-control comparisons and a meta-analysis of published VDR data. Eur J Cancer. 2009; 45(18): 3271–81. <https://doi.org/10.1016/j.ejca.2009.06.011> <PubMed>
34. Barroso E, Fernandez LP, Milne RL, et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies. BMC Cancer. 2008; 8(1): 385. <https://doi.org/10.1186/1471-2407-8-385> <PubMed>
35. Gapska P, Scott RJ, Serrano-Fernandez P, et al. Vitamin D receptor variants and the malignant melanoma risk: A population-based study. Cancer Epidemiol. 2009; 33(2): 103–7. <https://doi.org/10.1016/j.canep.2009.06.006>
36. Peña-Chilet M, Ibarrola-Villava M, Martin-González M, et al. rs12512631 on the Group Specific Complement (Vitamin D-Binding Protein GC) Implicated in Melanoma Susceptibility. PLoS One. 2013; 8(3): e59607. <https://doi.org/10.1371/journal.pone.0059607> <PubMed>
37. Zeljic K, Kandolf-Sekulovic L, Supic G, et al. Melanoma risk is associated with vitamin D receptor gene polymorphisms. Melanoma Res. 2014; 24(3): 273–9. <https://doi.org/10.1097/CMR.0000000000000065>
38. Cauci S, Maione V, Buligan C, Linussio M, Serraino D, Stinco G. BsmI (rs1544410) and FokI (rs2228570) vitamin D receptor polymorphisms, smoking, and body mass index as risk factors of cutaneous malignant melanoma in northeast Italy. Cancer Biol Med. 2017; 14(3): 302–18. <https://doi.org/10.20892/j.issn.2095-3941.2017.0064> <PubMed>
39. Li C, Liu Z, Zhang Z, et al. Genetic Variants of the Vitamin D Receptor Gene Alter Risk of Cutaneous Melanoma. J Invest Dermatol. 2007; 127(2): 276–80. <https://doi.org/10.1038/sj.jid.5700544>
40. Beysel S, Eyerci N, Ulubay M, et al. Maternal genetic contribution to pre-pregnancy obesity, gestational weight gain, and gestational diabetes mellitus. Diabetol Metab Syndr. 2019; 11(1): 37 <https://doi.org/10.1186/s13098-019-0434-x> <PubMed>
41. La Marra F, Stinco G, Buligan C, et al. Immunohistochemical evaluation of vitamin D receptor (VDR) expression in cutaneous melanoma tissues and four VDR gene polymorphisms. Cancer Biol Med. 2017; 14(2): 162–75.
42. Rezaiian F, Davoodi SH, Nikooyeh B, et al. Sun Exposure Makes no Discrimination based on Vitamin D Status and VDR-Foki Polymorphisms for Non-Melanoma Skin Cancers Risk in Iranian Subjects: A Case-Control Study. Asian Pac J Cancer Prev. 2022; 23(6): 1927–33. <https://doi.org/10.31557/APJCP.2022.23.6.1927> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive