Acta Med. 2024, 67: 113-124
https://doi.org/10.14712/18059694.2025.8
Updated Meta-Analysis of VDR FokI and TaqI Variants and Their Association with Melanoma Risk
References
1. W, Mwamba RN, Grullon K, et al. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis. 2022; 9(6): 1608–23.
<https://doi.org/10.1016/j.gendis.2022.04.004>
<PubMed>
2. F, Niktabar SM, Ghelmani Y, et al. Association of XPC Poly- morphisms with Cutaneous Malignant Melanoma Risk: Evidence from a Meta-Analysis. Acta Medica (Hradec Kral). 2020; 63(3): 101–12.
3. M, Singh D, Laversanne M, et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology. 2022; 158(5): 495.
<https://doi.org/10.1001/jamadermatol.2022.0160>
<PubMed>
4. F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424.
<https://doi.org/10.3322/caac.21492>
5. K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers (Basel). 2024; 16(5): 1016.
<https://doi.org/10.3390/cancers16051016>
<PubMed>
6. A, Lewandowski T, Rudzki G, et al. The Risk of Melanoma due to Exposure to Sun and Solarium Use in Poland: A Large-Scale, Hospital Based Case – Control Study. Asian Pac J Cancer Prev. 2023; 24(7): 2259.
<https://doi.org/10.31557/APJCP.2023.24.7.2259>
<PubMed>
7. DJ. Occupational skin cancers. Occup Med (Chic Ill). 2004; 54(7): 458–463.
<https://doi.org/10.1093/occmed/kqh098>
8. EM, Fisher DE. Red hair, light skin, and UV-independent risk for melanoma development in humans. JAMA Dermatology. 2016; 152(7): 751.
<https://doi.org/10.1001/jamadermatol.2016.0524>
<PubMed>
9. SMR, Dastgheib SA, Heiranizadeh N, et al. Association of XPG rs17655G>C and XPF rs1799801T>C Polymorphisms with Susceptibility to Cutaneous Malignant Melanoma: Evidence from a Case-Control Study, Systematic Review and Meta-Analysis. Klin Onkol. 2020; 33(3): 184–94.
10. S, Suppa M, Gandini S. Melanoma Epidemiology and Sun Exposure. Acta Derm Venereol. 2020; 100(11): 5746.
<https://doi.org/10.2340/00015555-3491>
<PubMed>
11. A, Ghadyani M, Asadian F, et al. Association of polymorphisms in nucleotide excision repair pathway genes with susceptibility to cutaneous melanoma. Klin Onkol. 2021; 34(5): 350–55.
<https://doi.org/10.48095/ccko2021350>
12. Z, Olsen CM, Burke MT, Isbel NM, Green AC. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am J Transplant. 2016; 16(12): 3490–503.
<https://doi.org/10.1111/ajt.13863>
13. C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol. 2022; 79: 217–30.
<https://doi.org/10.1016/j.semcancer.2020.05.018>
14. KD. Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment? Int Sch Res Not. 2013; 2013(1): 483687.
15. Jr F, Alexandru A, Ivan CS, et al. Are Pediatric Cancer Patients a Risk Group for Vitamin D Deficiency? A Systematic Review. Cancers. 2024; 16(24): 4201.
16. V, Dhananjaya MS, Karlekar M, Lila AR. Vitamin D deficiency or resistance and hypophosphatemia. Best Pract Res Clin Endocrinol Metab. 2024; 38(2): 101876.
<https://doi.org/10.1016/j.beem.2024.101876>
17. F, Neamatzadeh H, Nasiri R, et al. Association of vitamin D receptor BsmI, TaqI, FokI, and ApaI polymorphisms with susceptibility of chronic periodontitis: A systematic review and meta-analysis based on 38 case-control studies. Dent Res J. 2018; 15(3): 155–65.
18. AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci. 2020; 21(24): 1–24.
<https://doi.org/10.3390/ijms21249626>
<PubMed>
19. AT, Brozyna AA, Zmijewski MA, et al. Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Investig. 2017; 97(6): 706–24.
<https://doi.org/10.1038/labinvest.2017.3>
<PubMed>
20. E, Kim TK, Janjetovic Z, et al. Knocking out the vitamin d receptor enhances malignancy and decreases responsiveness to vitamin d3 hydroxyderivatives in human melanoma cells. Cancers (Basel). 2021; 13(13): 3111.
<https://doi.org/10.3390/cancers13133111>
<PubMed>
21. AL, Carpenter EL, Slominski AT, Indra AK. The Role of the Vitamin D Receptor in the Pathogenesis, Prognosis, and Treatment of Cutaneous Melanoma. Front Oncol. 2021; 11: 743667.
<https://doi.org/10.3389/fonc.2021.743667>
<PubMed>
22. MJ, Trump DL. Vitamin D Receptor Signaling and Cancer. Endocrinol Metab Clin North Am. 2017; 46(4): 1009.
<https://doi.org/10.1016/j.ecl.2017.07.007>
<PubMed>
23. R, De Luis-Román DA, Fernández-Gómez JM, Ruiz-Mambrilla M, Pérez-Castrillón JL. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(2): 360.
<https://doi.org/10.3390/nu14020360>
<PubMed>
24. M, Schope J, Wagenpfeil S, Vogt T, Reichrath J. Association of Vitamin D Receptor Gene Polymorphisms With Melanoma Risk: A Meta-analysis and Systematic Review. Anticancer Res. 2020; 40(2): 583–95.
<https://doi.org/10.21873/anticanres.13988>
25. YH, Gyu Song G. Vitamin D receptor FokI, BsmI, TaqI, ApaI, and EcoRV polymorphisms and susceptibility to melanoma: a meta-analysis. J BUON. 2015; 20(1): 235–43.
26. S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis. Cancer. 2008; 113(9): 2398–407.
<https://doi.org/10.1002/cncr.23867>
27. AF, Grigore LE, Ungureanu L, et al. Vitamin D receptor poly- morphisms and melanoma. Oncol Lett. 2019; 17(5): 4162–9.
28. PE, Osborne JE, Lear JT, et al. Vitamin D receptor poly- morphisms are associated with altered prognosis in patients with malignant melanoma. Clin Cancer Res. 2000; 6(2): 498–504.
29. C, Capizzi R, Concolino P, et al. Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br J Dermatol. 2007; 156(2): 277–82.
<https://doi.org/10.1111/j.1365-2133.2006.07620.x>
30. AF, González-Giraldo Y, García AY, Suarez DX, Rodríguez A, Gonzalez-Santos J. Association between VDR Gene Polymorphisms and Melanoma Susceptibility in a Colombian Population. Asian Pac J Cancer Prev. 2022; 23(1): 79–85.
<https://doi.org/10.31557/APJCP.2022.23.1.79>
<PubMed>
31. J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis. 2006; 28(2): 390–7.
<https://doi.org/10.1093/carcin/bgl156>
32. C, Liu Z, Wang LE, et al. Haplotype and genotypes of the VDR gene and cutaneous melanoma risk in non-Hispanic whites in Texas: A case-control study. Int J Cancer. 2008; 122(9): 2077–84.
<https://doi.org/10.1002/ijc.23357>
<PubMed>
33. JA, Taylor JC, Elliott F, et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case-control comparisons and a meta-analysis of published VDR data. Eur J Cancer. 2009; 45(18): 3271–81.
<https://doi.org/10.1016/j.ejca.2009.06.011>
<PubMed>
34. E, Fernandez LP, Milne RL, et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies. BMC Cancer. 2008; 8(1): 385.
<https://doi.org/10.1186/1471-2407-8-385>
<PubMed>
35. P, Scott RJ, Serrano-Fernandez P, et al. Vitamin D receptor variants and the malignant melanoma risk: A population-based study. Cancer Epidemiol. 2009; 33(2): 103–7.
<https://doi.org/10.1016/j.canep.2009.06.006>
36. M, Ibarrola-Villava M, Martin-González M, et al. rs12512631 on the Group Specific Complement (Vitamin D-Binding Protein GC) Implicated in Melanoma Susceptibility. PLoS One. 2013; 8(3): e59607.
<https://doi.org/10.1371/journal.pone.0059607>
<PubMed>
37. K, Kandolf-Sekulovic L, Supic G, et al. Melanoma risk is associated with vitamin D receptor gene polymorphisms. Melanoma Res. 2014; 24(3): 273–9.
<https://doi.org/10.1097/CMR.0000000000000065>
38. S, Maione V, Buligan C, Linussio M, Serraino D, Stinco G. BsmI (rs1544410) and FokI (rs2228570) vitamin D receptor polymorphisms, smoking, and body mass index as risk factors of cutaneous malignant melanoma in northeast Italy. Cancer Biol Med. 2017; 14(3): 302–18.
<https://doi.org/10.20892/j.issn.2095-3941.2017.0064>
<PubMed>
39. C, Liu Z, Zhang Z, et al. Genetic Variants of the Vitamin D Receptor Gene Alter Risk of Cutaneous Melanoma. J Invest Dermatol. 2007; 127(2): 276–80.
<https://doi.org/10.1038/sj.jid.5700544>
40. S, Eyerci N, Ulubay M, et al. Maternal genetic contribution to pre-pregnancy obesity, gestational weight gain, and gestational diabetes mellitus. Diabetol Metab Syndr. 2019; 11(1): 37
<https://doi.org/10.1186/s13098-019-0434-x>
<PubMed>
41. F, Stinco G, Buligan C, et al. Immunohistochemical evaluation of vitamin D receptor (VDR) expression in cutaneous melanoma tissues and four VDR gene polymorphisms. Cancer Biol Med. 2017; 14(2): 162–75.
42. F, Davoodi SH, Nikooyeh B, et al. Sun Exposure Makes no Discrimination based on Vitamin D Status and VDR-Foki Polymorphisms for Non-Melanoma Skin Cancers Risk in Iranian Subjects: A Case-Control Study. Asian Pac J Cancer Prev. 2022; 23(6): 1927–33.
<https://doi.org/10.31557/APJCP.2022.23.6.1927>
<PubMed>



