Acta Med. 2024, 67: 107-112

https://doi.org/10.14712/18059694.2025.7

Deleterious Effect of Fructose on the Heart Function of Hypertriglyceridemic Rats

Vladimír Knezl, Ružena Sotníková, Karol Švík, Štefan Bezek, Zuzana Brnoliaková, Zdenka Gáspárová

Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia

Received November 25, 2024
Accepted January 18, 2025

References

1. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004; 79: 537–43. <https://doi.org/10.1093/ajcn/79.4.537>
2. Brito-Monzani JO, Sanches IC, Bernardes N, et al. Hypertension induces additional cardiometabolic impairments and attenuates aerobic exercise training adaptations in fructose-fed ovariectomized rats. Hypertens Res. 2018; 41: 88–95. <https://doi.org/10.1038/hr.2017.94>
3. Brnoliakova Z, Knezl V, Sotnikova R, Gasparova Z. Metabolic syndrome in hypertriglyceridemic rats: Effects of antioxidants. Physiol Res. 2023; 72(suppl 1): 31–5. <https://doi.org/10.33549/physiolres.935021> <PubMed>
4. Busnatu S-S, Salmen T, Pana M-A, Rizzo M, Stallone T, Papanas N, Popovic DR, Tanasescu D, Serban D, Stoian AP. The role of fructose as a cardiovascular risk factor: An update. Metabolites. 2022; 12: 67. <https://doi.org/10.3390/metabo12010067> <PubMed>
5. Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent developments in rodent models of high-fructose diet-induced metabolic syndrome: A systematic review. Nutrients. 2021; 13: 2497. <https://doi.org/10.3390/nu13082497> <PubMed>
6. Chess DJ, Lei B, Hoit BD, Azimzadeh AM, Stanley WC. Deleterious effects of sugar and protective effects of starch on cardiac remodeling, contractile dysfunction, and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol. 2007; 293: H1853–60. <https://doi.org/10.1152/ajpheart.00544.2007>
7. de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MAR. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. British J Nutr. 2009; 101: 1178–84. <https://doi.org/10.1017/S0007114508066774>
8. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990; 186: 421–31. <https://doi.org/10.1016/0076-6879(90)86135-I>
9. Garcia YJ, Rodrigues-Malaver AJ, Panaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebelar slices. J Neurosci Methods. 2005; 144: 127–35. <https://doi.org/10.1016/j.jneumeth.2004.10.018>
10. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. Am J Coll Cardiol. 2006; 47: 1093–100. <https://doi.org/10.1016/j.jacc.2005.11.046>
11. Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018; 128: 545–55. <https://doi.org/10.1172/JCI96702> <PubMed>
12. Harchaoui KEL, Visser ME, Kastelein JJP, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. Curr Cardiol Rev. 2009; 5: 216–22. <https://doi.org/10.2174/157340309788970315> <PubMed>
13. Kang LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep. 2016; 6: 27460. <https://doi.org/10.1038/srep27460> <PubMed>
14. Kaprinay B, Lipták B, Slovák L, Švík K, Knezl V, Sotníková R, Gáspárová Z. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome. Physiol Res. 2016; 65(suppl 4): 515–8. <https://doi.org/10.33549/physiolres.933524>
15. Knezl V, Sotníková R, Brnoliaková Z, Stankovičová T, Bauer V, Bezek S. Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects. Interdiscip Toxicol. 2017; 10: 86–92. <https://doi.org/10.1515/intox-2017-0014> <PubMed>
16. Kosuru R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc Drugs Ther. 2018; 32: 147–63. <https://doi.org/10.1007/s10557-018-6780-3>
17. Laufs U, Bohm M, Weingartner O, Werner C, Custodis F, Poss J. Cardio- vascular disease and dyslipidemia: beyond LDL. Curr Pharm Design. 2011; 17: 861–70.
18. Lehnen AM, Rodrigues B, Irigoyen MC, De Angelis K, D’Agord Schaan B. Cardiovascular changes in animal models of metabolic syndrome. J Diabet Res. 2013; Article ID 761314.
19. Lelis DF, Andrade JMO, Almenara CCP, Brosequini-Filho GB, Mill JG, Baldo MP. High-fructose intake and the route towards cardiometabolic diseases. Life Sci. 2020; 259: 118235. <https://doi.org/10.1016/j.lfs.2020.118235>
20. Lipták B, Kaprinay B, Gáspárová Z. A rat-friendly modification of the non-invasive tail-cuff to record blood pressure. Lab Animal. 2017; 46: 251–3. <https://doi.org/10.1038/laban.1272>
21. Maarman GJ, Mendham AE, Lamont K, George C. Review of a causal role of fructose-containing sugars in myocardial susceptibility to ischemia/reperfusion injury. Nutr Res. 2017; 42: 11–9. <https://doi.org/10.1016/j.nutres.2017.03.003>
22. Martinez FJ, Rizza RA, Romero JC. High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension. 1994; 23: 456–63. <https://doi.org/10.1161/01.HYP.23.4.456>
23. Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardio- metabolic risk, and the epidemic of coronary artery disease. Eur J Heart. 2018; 39: 2497–505. <https://doi.org/10.1093/eurheartj/ehx518> <PubMed>
24. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014; 384: 626–35. <https://doi.org/10.1016/S0140-6736(14)61177-6>
25. Pepin A, Stanhope KL, Imbeault P. Are fruit juices healthier than sugar-sweetened beverages. A review. Nutrients. 2019; 11: 1006. <https://doi.org/10.3390/nu11051006> <PubMed>
26. Pol T, Held C, Westerbergh J, Lindbäck J, Alexander JH, Alings M, Erol C, Goto S, Halvorsen S, Huber K, Hanna M, Lopes RD, Ruzyllo W, Granger CB, Hijazi Z. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. J Am Heart Assoc. 2018; 7: e007444. <https://doi.org/10.1161/JAHA.117.007444> <PubMed>
27. Roeb E, Weiskirchen R. Fructose and non-alcoholic steatohepatitis. Front Pharmacol. 2021; 12: 634344. <https://doi.org/10.3389/fphar.2021.634344> <PubMed>
28. Seraphim DCC, Punaro GR, de Oliveira Fernandes T, Ginoza M, Lopes GS, Higa EMS. Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. Exp Gerontol. 2017; 99: 53–60. <https://doi.org/10.1016/j.exger.2017.09.011>
29. Sukiasyan L. Fructose-induced alteration of the heart and vessels homeostasis. Curr Probl Cardiol. 2023; 4(2): 101013. <https://doi.org/10.1016/j.cpcardiol.2021.101013>
30. Tikhonoff V, Casiglia E, Virdis A, et al. Prognostic value and relative cutoffs of triglycerides predicting cardiovascular ourcome in a large regional-based italian database. J Am Heart Assoc. 2024; 13: e030319. <https://doi.org/10.1161/JAHA.123.030319> <PubMed>
31. Topçu Özen S, Palabıyık O, Guksu Z, Arslan E, Akbaş Tosunoğlu E, Süt N, Vardar SA. The effect of high-fructose feeding on hemodynamic behavior and infarct size of isolated rat hearts subjected to low-flow ischemia. Genel Tip Derg. 2022; 32: 324–9. <https://doi.org/10.54005/geneltip.1095947>
32. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017; 183: 57–70. <https://doi.org/10.1016/j.trsl.2017.01.001> <PubMed>
33. Varbo A, Nordestgaard BG. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2016; 36: 2133–5. <https://doi.org/10.1161/ATVBAHA.116.308305>
34. Vrbjar N, Vlkovicova J, Snurikova D, Kalocayova B, Zorad S, Culafic T, Tepavcevic S, Tothova L, Radosinska D, Kollarova M, Radosinska J. Alterations in oxidative stress markers and Na, K-ATPase enzyme properties in kidney after fructose intake and quercetin intervention in rats. Life. 2023; 13: 931. <https://doi.org/10.3390/life13040931> <PubMed>
35. Xing S-S, Bi X-P, Tan H-W, Yhang Y, Xing Q-C, Zhang W. Overexpression of interleukin-18 aggravates cardiac fibrosis and diastolic dysfunction in fructose-fed rats. Mol Med. 2010; 16: 465–70. <https://doi.org/10.2119/molmed.2010.00028> <PubMed>
36. Xu C, Yu J. Pathophysiological mechanisms of hypertension development induced by fructose consumption. Food Funct. 2022; 13: 1702–17. <https://doi.org/10.1039/D1FO03381F>
37. Wang X, Xu Z, Chang R, Zeng C, Zhao Y. High-fructose diet induces cardiac dysfunction via macrophage recruitment in adult mice. J Cardiovasc Pharmacol and Therapeut. 2023; 28: 1–11. <https://doi.org/10.1177/10742484231162249>
38. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006; 174: 801–9. <https://doi.org/10.1503/cmaj.051351> <PubMed>
39. Wilson PWF, D’Agostino RBD, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005; 112: 3066–72. <https://doi.org/10.1161/CIRCULATIONAHA.105.539528>
40. Zhang Y, Zhang L, Zhang Y, Xu JJ, Sun LL, Li SZ. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-kappaB and MAPK signaling pathway. Biomed Pharmacother. 2016; 84: 1337–49. <https://doi.org/10.1016/j.biopha.2016.10.036>
41. Zicha J, Pecháňová O, Čačányiová S, et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006; 55(suppl 1): 49–63. <https://doi.org/10.33549/physiolres.930000.55.S1.49>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive