Acta Med. 2024, 67: 107-112
https://doi.org/10.14712/18059694.2025.7
Deleterious Effect of Fructose on the Heart Function of Hypertriglyceridemic Rats
References
1. Am J Clin Nutr. 2004; 79: 537–43.
< GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. https://doi.org/10.1093/ajcn/79.4.537>
2. Hypertens Res. 2018; 41: 88–95.
< JO, Sanches IC, Bernardes N, et al. Hypertension induces additional cardiometabolic impairments and attenuates aerobic exercise training adaptations in fructose-fed ovariectomized rats. https://doi.org/10.1038/hr.2017.94>
3. Physiol Res. 2023; 72(suppl 1): 31–5.
< Z, Knezl V, Sotnikova R, Gasparova Z. Metabolic syndrome in hypertriglyceridemic rats: Effects of antioxidants. https://doi.org/10.33549/physiolres.935021>
<PubMed>
4. Metabolites. 2022; 12: 67.
< S-S, Salmen T, Pana M-A, Rizzo M, Stallone T, Papanas N, Popovic DR, Tanasescu D, Serban D, Stoian AP. The role of fructose as a cardiovascular risk factor: An update. https://doi.org/10.3390/metabo12010067>
<PubMed>
5. Nutrients. 2021; 13: 2497.
< AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent developments in rodent models of high-fructose diet-induced metabolic syndrome: A systematic review. https://doi.org/10.3390/nu13082497>
<PubMed>
6. Am J Physiol Heart Circ Physiol. 2007; 293: H1853–60.
< DJ, Lei B, Hoit BD, Azimzadeh AM, Stanley WC. Deleterious effects of sugar and protective effects of starch on cardiac remodeling, contractile dysfunction, and mortality in response to pressure overload. https://doi.org/10.1152/ajpheart.00544.2007>
7. British J Nutr. 2009; 101: 1178–84.
< RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MAR. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. https://doi.org/10.1017/S0007114508066774>
8. Methods Enzymol. 1990; 186: 421–31.
< HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. https://doi.org/10.1016/0076-6879(90)86135-I>
9. J Neurosci Methods. 2005; 144: 127–35.
< YJ, Rodrigues-Malaver AJ, Panaloza N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebelar slices. https://doi.org/10.1016/j.jneumeth.2004.10.018>
10. Am J Coll Cardiol. 2006; 47: 1093–100.
< SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. https://doi.org/10.1016/j.jacc.2005.11.046>
11. J Clin Invest. 2018; 128: 545–55.
< SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. https://doi.org/10.1172/JCI96702>
<PubMed>
12. Curr Cardiol Rev. 2009; 5: 216–22.
< KEL, Visser ME, Kastelein JJP, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. https://doi.org/10.2174/157340309788970315>
<PubMed>
13. Sci Rep. 2016; 6: 27460.
< LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. https://doi.org/10.1038/srep27460>
<PubMed>
14. Physiol Res. 2016; 65(suppl 4): 515–8.
< B, Lipták B, Slovák L, Švík K, Knezl V, Sotníková R, Gáspárová Z. Hypertriglyceridemic rats fed high fat diet as a model of metabolic syndrome. https://doi.org/10.33549/physiolres.933524>
15. Interdiscip Toxicol. 2017; 10: 86–92.
< V, Sotníková R, Brnoliaková Z, Stankovičová T, Bauer V, Bezek S. Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects. https://doi.org/10.1515/intox-2017-0014>
<PubMed>
16. Cardiovasc Drugs Ther. 2018; 32: 147–63.
< R, Kandula V, Rai U, Prakash S, Xia Z, Singh S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. https://doi.org/10.1007/s10557-018-6780-3>
17. Curr Pharm Design. 2011; 17: 861–70.
U, Bohm M, Weingartner O, Werner C, Custodis F, Poss J. Cardio- vascular disease and dyslipidemia: beyond LDL.
18. J Diabet Res. 2013; Article ID 761314.
AM, Rodrigues B, Irigoyen MC, De Angelis K, D’Agord Schaan B. Cardiovascular changes in animal models of metabolic syndrome.
19. Life Sci. 2020; 259: 118235.
< DF, Andrade JMO, Almenara CCP, Brosequini-Filho GB, Mill JG, Baldo MP. High-fructose intake and the route towards cardiometabolic diseases. https://doi.org/10.1016/j.lfs.2020.118235>
20. Lab Animal. 2017; 46: 251–3.
< B, Kaprinay B, Gáspárová Z. A rat-friendly modification of the non-invasive tail-cuff to record blood pressure. https://doi.org/10.1038/laban.1272>
21. Nutr Res. 2017; 42: 11–9.
< GJ, Mendham AE, Lamont K, George C. Review of a causal role of fructose-containing sugars in myocardial susceptibility to ischemia/reperfusion injury. https://doi.org/10.1016/j.nutres.2017.03.003>
22. Hypertension. 1994; 23: 456–63.
< FJ, Rizza RA, Romero JC. High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. https://doi.org/10.1161/01.HYP.23.4.456>
23. Eur J Heart. 2018; 39: 2497–505.
< P, Jang C, Arany Z, Krek W. Fructose metabolism, cardio- metabolic risk, and the epidemic of coronary artery disease. https://doi.org/10.1093/eurheartj/ehx518>
<PubMed>
24. Lancet. 2014; 384: 626–35.
< BG, Varbo A. Triglycerides and cardiovascular disease. https://doi.org/10.1016/S0140-6736(14)61177-6>
25. Nutrients. 2019; 11: 1006.
< A, Stanhope KL, Imbeault P. Are fruit juices healthier than sugar-sweetened beverages. A review. https://doi.org/10.3390/nu11051006>
<PubMed>
26. J Am Heart Assoc. 2018; 7: e007444.
< T, Held C, Westerbergh J, Lindbäck J, Alexander JH, Alings M, Erol C, Goto S, Halvorsen S, Huber K, Hanna M, Lopes RD, Ruzyllo W, Granger CB, Hijazi Z. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. https://doi.org/10.1161/JAHA.117.007444>
<PubMed>
27. Front Pharmacol. 2021; 12: 634344.
< E, Weiskirchen R. Fructose and non-alcoholic steatohepatitis. https://doi.org/10.3389/fphar.2021.634344>
<PubMed>
28. Exp Gerontol. 2017; 99: 53–60.
< DCC, Punaro GR, de Oliveira Fernandes T, Ginoza M, Lopes GS, Higa EMS. Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. https://doi.org/10.1016/j.exger.2017.09.011>
29. Curr Probl Cardiol. 2023; 4(2): 101013.
< L. Fructose-induced alteration of the heart and vessels homeostasis. https://doi.org/10.1016/j.cpcardiol.2021.101013>
30. J Am Heart Assoc. 2024; 13: e030319.
< V, Casiglia E, Virdis A, et al. Prognostic value and relative cutoffs of triglycerides predicting cardiovascular ourcome in a large regional-based italian database. https://doi.org/10.1161/JAHA.123.030319>
<PubMed>
31. Genel Tip Derg. 2022; 32: 324–9.
< Özen S, Palabıyık O, Guksu Z, Arslan E, Akbaş Tosunoğlu E, Süt N, Vardar SA. The effect of high-fructose feeding on hemodynamic behavior and infarct size of isolated rat hearts subjected to low-flow ischemia. https://doi.org/10.54005/geneltip.1095947>
32. Transl Res. 2017; 183: 57–70.
< JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. https://doi.org/10.1016/j.trsl.2017.01.001>
<PubMed>
33. Arterioscler Thromb Vasc Biol. 2016; 36: 2133–5.
< A, Nordestgaard BG. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. https://doi.org/10.1161/ATVBAHA.116.308305>
34. Life. 2023; 13: 931.
< N, Vlkovicova J, Snurikova D, Kalocayova B, Zorad S, Culafic T, Tepavcevic S, Tothova L, Radosinska D, Kollarova M, Radosinska J. Alterations in oxidative stress markers and Na, K-ATPase enzyme properties in kidney after fructose intake and quercetin intervention in rats. https://doi.org/10.3390/life13040931>
<PubMed>
35. Mol Med. 2010; 16: 465–70.
< S-S, Bi X-P, Tan H-W, Yhang Y, Xing Q-C, Zhang W. Overexpression of interleukin-18 aggravates cardiac fibrosis and diastolic dysfunction in fructose-fed rats. https://doi.org/10.2119/molmed.2010.00028>
<PubMed>
36. Food Funct. 2022; 13: 1702–17.
< C, Yu J. Pathophysiological mechanisms of hypertension development induced by fructose consumption. https://doi.org/10.1039/D1FO03381F>
37. J Cardiovasc Pharmacol and Therapeut. 2023; 28: 1–11.
< X, Xu Z, Chang R, Zeng C, Zhao Y. High-fructose diet induces cardiac dysfunction via macrophage recruitment in adult mice. https://doi.org/10.1177/10742484231162249>
38. CMAJ. 2006; 174: 801–9.
< DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. https://doi.org/10.1503/cmaj.051351>
<PubMed>
39. Circulation. 2005; 112: 3066–72.
< PWF, D’Agostino RBD, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. https://doi.org/10.1161/CIRCULATIONAHA.105.539528>
40. Biomed Pharmacother. 2016; 84: 1337–49.
< Y, Zhang L, Zhang Y, Xu JJ, Sun LL, Li SZ. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-kappaB and MAPK signaling pathway. https://doi.org/10.1016/j.biopha.2016.10.036>
41. Physiol Res. 2006; 55(suppl 1): 49–63.
< J, Pecháňová O, Čačányiová S, et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? https://doi.org/10.33549/physiolres.930000.55.S1.49>