Acta Med. 2023, 66: 61-67

https://doi.org/10.14712/18059694.2023.17

Associations of Serum Total Homocysteine Levels with Various Demographic, Clinical and Genetic Characteristics in Healthy Greek Adults

Elias E. Mazokopakisa,b, Maria G. Papadomanolakic, John A. Papadakisd

aDepartment of Internal Medicine, Naval Hospital of Crete, Chania, Greece
bPrivate Medical Office of Internal Medicine, Chania, Greece
cSchool of Production Engineering and Management, Technical University of Crete, Chania, Greece
dDepartment of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece

Received October 27, 2022
Accepted August 21, 2023

References

1. Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis 2011; 34: 75–81. <https://doi.org/10.1007/s10545-010-9177-4> <PubMed>
2. Mazokopakis EE, Starakis IK. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficiency. Diabetes Res Clin Pract 2012; 97: 359–67. <https://doi.org/10.1016/j.diabres.2012.06.001>
3. Hiraoka M, Kagawa Y. Genetic polymorphisms and folate status. Congenit Anom (Kyoto) 2017; 57: 142–9. <https://doi.org/10.1111/cga.12232> <PubMed>
4. Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr 2019; 6: 49. <https://doi.org/10.3389/fnut.2019.00049> <PubMed>
5. Brustolin S, Giugliani R, Félix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 2010; 43: 1–7. <https://doi.org/10.1590/S0100-879X2009007500021>
6. Lopes CI. Hyperhomocysteinemia: How does it affect the development of cardiovascular disease? Int Arch Cardiovasc Dis 2018; 2: 008.
7. Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2010; 49: 535–48. <https://doi.org/10.2165/11532990-000000000-00000>
8. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015; 14: 6. <https://doi.org/10.1186/1475-2891-14-6> <PubMed>
9. Moll S, Varga EA. Homocysteine and MTHFR mutations. Circulation 2015; 132: e6–9. <https://doi.org/10.1161/CIRCULATIONAHA.114.013311>
10. Moretti R, Caruso P. The controversial role of homocysteine in neurology: from labs to clinical practice. Int J Mol Sci 2019; 20: E231. <https://doi.org/10.3390/ijms20010231> <PubMed>
11. Mazokopakis EE, Papadomanolaki MG. Methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms among Greek women with medical history of recurrent pregnancy loss. Arch Gynecol Obstet 2020; 302: 1555–6. <https://doi.org/10.1007/s00404-020-05485-7>
12. WHO (World Health Organization), Obesity: preventing and managing the global epidemic. WHO/NUT/NCD/98.1. Geneva, Switzerland: World Health Organization, 1998.
13. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502. <https://doi.org/10.1093/clinchem/18.6.499>
14. Lauer RM, Lee J, Clarke WR. Factors affecting the relationship between childhood and adult cholesterol levels: the Muscatine Study. Pediatrics 1988; 82: 309–18.
15. Colson NJ, Naug HL, Nikbakht E, Zhang P, McCormack J. The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. Eur J Nutr 2017; 56: 247–60. <https://doi.org/10.1007/s00394-015-1076-x>
16. Ni J, Zhang L, Zhou T, et al. Association between the MTHFR C677T polymorphism, blood folate and vitamin B12 deficiency, and elevated serum total homocysteine in healthy individuals in Yunnan Province, China. J Chin Med Assoc 2017; 80: 147–53. <https://doi.org/10.1016/j.jcma.2016.07.005>
17. Waskiewicz A, Piotrowski W, Broda G, Sobczyk-Kopciol A, Ploski R. Impact of MTHFR C677T gene polymorphism and vitamins intake on homocysteine concentration in the Polish adult population. Kardiol Pol 2011; 69: 1259–64.
18. Kang SS, Rosenson RS. Analytic approaches for the treatment of hyperhomocysteinemia and its impact on vascular disease. Cardiovasc Drugs Ther 2018; 32: 233–40. <https://doi.org/10.1007/s10557-018-6790-1>
19. Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients 2015; 7: 6670–87. <https://doi.org/10.3390/nu7085303> <PubMed>
20. Weisberg IS, Jacques PF, Selhub J, et al. The 1298A-->C polymorphism in methylenetetrahydrofolatereductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 2001; 156: 409–15. <https://doi.org/10.1016/S0021-9150(00)00671-7>
21. Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 2014; 44: 480–8. <https://doi.org/10.3109/00498254.2013.845705>
22. Servy E, Menezo Y. The Methylene Tetrahydrofolate Reductase (MTHFR) isoform challenge. High doses of folic acid are not a suitable option compared to 5 Methyltetrahydrofolate treatment. Clin Obstet Gynecol Reprod Med 2017; 3: 1–5. <https://doi.org/10.15761/COGRM.1000204>
23. Sawaengsri H, Wang J, Reginaldo C, et al. High folic acid intake reduces natural killer cell cytotoxicity in aged mice. J Nutr Biochem 2016; 30: 10–-7. <https://doi.org/10.1016/j.jnutbio.2015.12.006>
24. Kim YI. Folic acid supplementation and cancer risk: point. Cancer Epidemiol Biomarkers Prev 2008; 17: 2220–5. <https://doi.org/10.1158/1055-9965.EPI-07-2557>
25. Ledowsky C (2015). Folic Acid vs 5-MTHF in treating MTHFR deficiency. MTHFR Support Australia. Available on: https://mthfrsupport.com.au/2015/05/folic-acid-vs-5-mthf-treating-mthfr-deficiency/.
26. Smulders YM, Smith DE, Kok RM, et al. Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap. Br J Haematol 2006; 132: 623–9. <https://doi.org/10.1111/j.1365-2141.2005.05913.x>
27. Nygård O, Refsum H, Ueland PM, Vollset SE. Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 1998; 67: 263–70. <https://doi.org/10.1093/ajcn/67.2.263>
28. Al-Bayyari N, Hamadneh J, Hailat R, Hamadneh S. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study. Nutr Res 2017; 48: 9–15. <https://doi.org/10.1016/j.nutres.2017.10.008>
29. Daly C, Fitzgerald AP, O’Callaghan P, Collins P, Cooney MT, Graham IM; COMAC Group. Homocysteine increases the risk associated with hyperlipidaemia. Eur J Cardiovasc Prev Rehabil 2009; 16: 150–5. <https://doi.org/10.1097/HJR.0b013e32831e1185>
30. Momin M, Jia J, Fan F, Li J, Dou J, Chen D, Huo Y, Zhang Y. Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population. Lipids Health Dis 2017; 16: 54. <https://doi.org/10.1186/s12944-017-0441-6> <PubMed>
31. Wu H, Wang B, Ban Q, et al. Association of total homocysteine with blood pressure in a general population of Chinese adults: a cross-sectional study in Jiangsu province, China. BMJ Open 2018; 8: e021103. <https://doi.org/10.1136/bmjopen-2017-021103> <PubMed>
32. Xu R, Huang F, Wang Y, Liu Q, Lv Y, Zhang Q. Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Sci Rep 2020; 10: 17401. <https://doi.org/10.1038/s41598-020-74596-7> <PubMed>
33. Han L, Liu Y, Wang C, et al. Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: A population-based study and systematic review. Clin Nutr 2017; 36: 1215–30. <https://doi.org/10.1016/j.clnu.2016.11.011>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive