Acta Med. 2023, 66: 55-60

https://doi.org/10.14712/18059694.2023.16

Evaluation of Diurnal Changes of Mental Fatigue Using a New Portable Device for Visual Cognitive Evoked Potentials

Huey Shin Chuaa, Katrin Ji-In Millera, Niha Akhtar Sayyedaa, Marten Reda Youssef Ibrahim AttaAllaa, Eithar Osama Eltayeb Babikira, Jan Kremláčekb, Miroslav Kubaa

aCharles University, Faculty of Medicine in Hradec Králové, Dept. of Pathophysiology, Hradec Králové, Czech Republic
bCharles University – Faculty of Medicine in Hradec Králové, Dept. of Medical Biophysics, Hradec Králové, Czech Republic

Received March 31, 2023
Accepted August 17, 2023

References

1. Tornero-Aguilera JF, Jimenez-Morcillo J, Rubio-Zarapuz A, Clemente-Suárez VJ. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int J Environ Res Public Health 2022; 19: 3909. <https://doi.org/10.3390/ijerph19073909> <PubMed>
2. Lamti HA, Khelifa MMB, Hugel V. Mental fatigue level detection based on event related and visual evoked potentials features fusion in virtual indoor environment. Cogn Neurodyn 2019; 13: 271–85. <https://doi.org/10.1007/s11571-019-09523-2> <PubMed>
3. Polich J, Herbst KL. P300 as a clinical assay: rationale, evaluation, and findings. Int. J. Psychophysiol 2000; 38: 3–19. <https://doi.org/10.1016/S0167-8760(00)00127-6>
4. Lee MH, Williamson J, LeeYE, Lee SW. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Neuroreport 2018; 29: 1301–8. <https://doi.org/10.1097/WNR.0000000000001111> <PubMed>
5. Sabeti M, Boostani R, Rastgar K. How mental fatigue affects the neural sources of P300 component? J Integrat Neurosci 2018; 17: 93–111. <https://doi.org/10.3233/JIN-170040>
6. Huang H, Katsuura T, Shimomura Y, Iwanaga K. Diurnal Changes of ERP Response to Sound Stimuli of Varying Frequency in Morning-type and Evening-type Subjects. J Physiol Anthropol 2006; 25: 49–54. <https://doi.org/10.2114/jpa2.25.49>
7. Kuba M, Kremláček J, Vít F et al. VEP examination with new portable device. Doc Ophthalmol 2023; 146: 79–91. <https://doi.org/10.1007/s10633-022-09911-w> <PubMed>
8. Pavarini, S.C.I., Brigola, A.G., Luchesi et al..On the use of the P300 as a tool for cognitive processing assessment in healthy aging – a review. Dement Neuropsychol 2018; 12: 1–11. <https://doi.org/10.1590/1980-57642018dn12-010001> <PubMed>
9. Kuba M, Kremlacek J, Langrova J, Kubova Z, Szanyi J, Vit F. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res 2012; 62: 9–16. <https://doi.org/10.1016/j.visres.2012.03.014>
10. Kaseda Y, Jiang C, Kurokawa K, Mimori Y, Nakamura S. Objective evaluation of fatigue by event-related potentials. J Neurol Sci 1998; 158: 96–100. <https://doi.org/10.1016/S0022-510X(98)00100-2>
11. Higuchi S, Liu Y, Yuasa T, Maeda A,Motohashi Y. Diurnal variation in the P300 component of human cognitive event-related potential. Chronobiology Internat 2000; 17: 669–78. <https://doi.org/10.1081/CBI-100101073>
12. Duncan-Johnson CC, Donchin E. The Relation of P300 Latency to Reaction Time as a Function of Expectancy. Progress in Brain Res 1980; 54: 717–22. <https://doi.org/10.1016/S0079-6123(08)61693-3>
13. Kraiuhin C, Yiannikis C, Coyle S et al. The relationship between reaction time and latency of the P300 event-related potential in normal subjects and Alzheimer’s disease. Clin Exp Neurol 1989; 26: 81–8.
14. Machida K, Murias M, Johnson KA. Electrophysiological Correlates of Response Time Variability During a Sustained Attention Task. Front Hum Neurosci – Sec. Brain Health and Clin Neurosci 2019; 13: 363. <https://doi.org/10.3389/fnhum.2019.00363> <PubMed>
15. Zhou Y, Wang W, Yan L, Yang B. Research on the Relationship between Fatigue and P300 Potential in Multi-Stage RSVP Small Target Detection. Proceedings of the 10th International Conference on Computing and Pattern Recognition 2021: 92–98.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive