Acta Med. 2023, 66: 55-60
https://doi.org/10.14712/18059694.2023.16
Evaluation of Diurnal Changes of Mental Fatigue Using a New Portable Device for Visual Cognitive Evoked Potentials
References
1. JF, Jimenez-Morcillo J, Rubio-Zarapuz A, Clemente-Suárez VJ. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int J Environ Res Public Health 2022; 19: 3909.
<https://doi.org/10.3390/ijerph19073909>
<PubMed>
2. HA, Khelifa MMB, Hugel V. Mental fatigue level detection based on event related and visual evoked potentials features fusion in virtual indoor environment. Cogn Neurodyn 2019; 13: 271–85.
<https://doi.org/10.1007/s11571-019-09523-2>
<PubMed>
3. J, Herbst KL. P300 as a clinical assay: rationale, evaluation, and findings. Int. J. Psychophysiol 2000; 38: 3–19.
<https://doi.org/10.1016/S0167-8760(00)00127-6>
4. MH, Williamson J, LeeYE, Lee SW. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Neuroreport 2018; 29: 1301–8.
<https://doi.org/10.1097/WNR.0000000000001111>
<PubMed>
5. M, Boostani R, Rastgar K. How mental fatigue affects the neural sources of P300 component? J Integrat Neurosci 2018; 17: 93–111.
<https://doi.org/10.3233/JIN-170040>
6. H, Katsuura T, Shimomura Y, Iwanaga K. Diurnal Changes of ERP Response to Sound Stimuli of Varying Frequency in Morning-type and Evening-type Subjects. J Physiol Anthropol 2006; 25: 49–54.
<https://doi.org/10.2114/jpa2.25.49>
7. M, Kremláček J, Vít F et al. VEP examination with new portable device. Doc Ophthalmol 2023; 146: 79–91.
<https://doi.org/10.1007/s10633-022-09911-w>
<PubMed>
8. , S.C.I., Brigola, A.G., Luchesi et al..On the use of the P300 as a tool for cognitive processing assessment in healthy aging – a review. Dement Neuropsychol 2018; 12: 1–11.
<https://doi.org/10.1590/1980-57642018dn12-010001>
<PubMed>
9. M, Kremlacek J, Langrova J, Kubova Z, Szanyi J, Vit F. Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res 2012; 62: 9–16.
<https://doi.org/10.1016/j.visres.2012.03.014>
10. Y, Jiang C, Kurokawa K, Mimori Y, Nakamura S. Objective evaluation of fatigue by event-related potentials. J Neurol Sci 1998; 158: 96–100.
<https://doi.org/10.1016/S0022-510X(98)00100-2>
11. S, Liu Y, Yuasa T, Maeda A,Motohashi Y. Diurnal variation in the P300 component of human cognitive event-related potential. Chronobiology Internat 2000; 17: 669–78.
<https://doi.org/10.1081/CBI-100101073>
12. CC, Donchin E. The Relation of P300 Latency to Reaction Time as a Function of Expectancy. Progress in Brain Res 1980; 54: 717–22.
<https://doi.org/10.1016/S0079-6123(08)61693-3>
13. C, Yiannikis C, Coyle S et al. The relationship between reaction time and latency of the P300 event-related potential in normal subjects and Alzheimer’s disease. Clin Exp Neurol 1989; 26: 81–8.
14. K, Murias M, Johnson KA. Electrophysiological Correlates of Response Time Variability During a Sustained Attention Task. Front Hum Neurosci – Sec. Brain Health and Clin Neurosci 2019; 13: 363.
<https://doi.org/10.3389/fnhum.2019.00363>
<PubMed>
15. Y, Wang W, Yan L, Yang B. Research on the Relationship between Fatigue and P300 Potential in Multi-Stage RSVP Small Target Detection. Proceedings of the 10th International Conference on Computing and Pattern Recognition 2021: 92–98.


