Acta Med. 2023, 66: 47-54

https://doi.org/10.14712/18059694.2023.15

Immunological Parameters in Patients Suffering from Atopic Dermatitis and Either Treated or Non-Treated with Dupilumab

Petra BoudkováaID, Jarmila Čelakovskáb, Eva Čermákovác, Ctirad Andrýsa, Jan Krejseka

aDepartment of Clinical Immunology and Allergology, Faculty Hospital and Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
bDepartment of Dermatology and Venereology Faculty Hospital and Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
cDepartment of Medical Biophysics, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic

Received March 22, 2023
Accepted June 9, 2023

References

1. Silverberg NB. Typical and atypical clinical appearance of atopic dermatitis. Clin Dermatol 2017; 35(4): 354–59. <https://doi.org/10.1016/j.clindermatol.2017.03.007>
2. Auriemma M, Giovina V, Paolo A, et al. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw 2013; 24(1): 37–44.
3. Paller A, Spergel J, Mina-Osorio P, et al. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol 2018; 143(1): 46–55. <https://doi.org/10.1016/j.jaci.2018.11.006>
4. Benedetto A, Kubo A, Beck LA. Skin barrier disruption: A requirement for allergen sensitization. J Invest Dermatol 2012; 132(3): 949–63. <https://doi.org/10.1038/jid.2011.435> <PubMed>
5. Brauweiler AM, Goleva E, Leung DY. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol 2014; 134: 2114–21. <https://doi.org/10.1038/jid.2014.43> <PubMed>
6. Brunner PM, Emma G, Donald YML. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol 2017; 139(4): S65–S76. <https://doi.org/10.1016/j.jaci.2017.01.011> <PubMed>
7. Biedermann T, Skabytska Y, Kaesler S, et al. Regulation of T Cell Immunity in Atopic Dermatitis by Microbes: The Yin and Yang of Cutaneous Inflammation. Front Immunol 2015; 13(6): 353.
8. Zhou Y, Zhang Y, Han J, et al. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med 2020; 18(131): 1–12.
9. Fukuda K, Waka I, Tatsuma K, et al. Development of conjunctivitis with a conjunctival proliferative lesion in a patient treated with dupilumab for atopic dermatitis. Allergol Int 2019; 68(3): 383–4. <https://doi.org/10.1016/j.alit.2018.12.012>
10. Nedoszytko B, Sokołowska-Wojdyło M, RuckemannDziurdzińska K, et al. Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Adv Dermatol Allergol 2014; 31: 84–91. <https://doi.org/10.5114/pdia.2014.40920> <PubMed>
11. Brogger P, Lars B, Stine S, et al. Antagonism of the interleukin 4 receptor α promotes TH1-signalling among T cells from patients with atopic dermatitis after stimulation. Hum Immunol 2020; 91(1): 1-6.
12. Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2016; 138: 336–49. <https://doi.org/10.1016/j.jaci.2016.06.010>
13. Kisich KO, Carspecken CW, Fieve S, et al. Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol. 2008; 122: 62–8. <https://doi.org/10.1016/j.jaci.2008.04.022>
14. Mak T, Saunders M. Cytokines and cytokine receptors. Immune Response 2006; 2006(1): 463–516. <https://doi.org/10.1016/B978-012088451-3.50019-3>
15. Frew JW, David G, Kristina N, et al. Beyond antibodies: B cells in Hidradenitis Suppurativa: Bystanders, contributors or therapeutic targets. Exp Dermatol 2019; 2020(29): 509–15.
16. Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76(7): 1981–9. <https://doi.org/10.1111/all.14724> <PubMed>
17. Liu C, Richard K, Wiggins M, et al. CD23 can negatively regulate B-cell receptor signaling. Sci Rep 2016; 6(25629): 1–8.
18. Yao Y, Wang N, Chen CL, et al. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy 2020; 75(10): 2599–612. <https://doi.org/10.1111/all.14288>
19. D’Arena G, De FV, Pietrantuono G, et al. CD200 and Chronic Lymphocytic Leukemia: Biological and Clinical Relevance. Front Oncol 2020; 26(10): 58442–7.
20. Gorczynski R, Khatri I, Lee L, et al. An interaction between CD200 and monoclonal antibody agonists to CD200R2 in development of dendritic cells that preferentially induce populations of CD4+CD25+ T regulatory cells. J Immunol 2008; 180: 5946–55. <https://doi.org/10.4049/jimmunol.180.9.5946>
21. Cherwinski HM, Murphy CA, Joyce BL, et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol 2005; 174: 1348–56. <https://doi.org/10.4049/jimmunol.174.3.1348>
22. Coles SJ, Wang ECY, Man S, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 2011; 25: 792–9. <https://doi.org/10.1038/leu.2011.1> <PubMed>
23. Mannon P, Walter R. Interleukin 13 and its role in gut defence and inflammation. Gut 2012; 2012(61): 1765-73. <https://doi.org/10.1136/gutjnl-2012-303461>
24. Barclay A, Wright G, Brooke G, et al. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002; 23(6), 285–90. <https://doi.org/10.1016/S1471-4906(02)02223-8>
25. Jiang Y, Wencong MA. Assessment of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Atopic Dermatitis Patients. Med Sci Monit 2017; 2017(23): 1340–6. <https://doi.org/10.12659/MSM.900212> <PubMed>
26. Brenninkmeijer EE, Schram ME, Leeflang MM, et al. Diagnostic criteria for atopic dermatitis: A systematic review. Br J Dermatol 2008; 158: 754–65. <https://doi.org/10.1111/j.1365-2133.2007.08412.x>
27. Lee KY, Cho KJ, Kim YT, et al. Serum eosinophil-derived neurotoxin in childhood atopic dermatitis: A useful marker of disease activity? Ann Allergy Asthma Immunol 2009; 102: 532–4. <https://doi.org/10.1016/S1081-1206(10)60131-7>
28. Szymanski L, Cioa A, Ciepielak M, et al. Cytokines and apoptosis in atopic dermatitis. Postepy Dermatol Allergol 2021; 38(1): 1–13. <https://doi.org/10.5114/ada.2019.88394> <PubMed>
29. Yamauchi T, Sasaki S, Lee ES, et al. Dupilumab treatment ameliorates clinical and hematological symptoms, including blood eosinophilia, in patients with atopic dermatitis. Int J Dermatol 2021; 60(2): 190–5. <https://doi.org/10.1111/ijd.15183>
30. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 2016; 388(10039): 31–44. <https://doi.org/10.1016/S0140-6736(16)30307-5>
31. Vestergaard Ch, Helle J, BAUMGARTNER N, et al. Expression of CCR2 on monocytes nad macrophages in chronically inflamed skin in atopic dermatitis and psoriasis. Acta Derm Venereol 2004; 2004(84): 353–8. <https://doi.org/10.1080/00015550410034444>
32. Leung DY, Bieber T. Atopic Dermatitis. Lancet 2003; 361(9352): 151–60. <https://doi.org/10.1016/S0140-6736(03)12193-9>
33. Katschke KJ Jr, Rottman JB, Ruth JH, Qin S, Wu L, LaRosa G, et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum 2001; 44: 1022–32. <https://doi.org/10.1002/1529-0131(200105)44:5<1022::AID-ANR181>3.0.CO;2-N>
34. Ozcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy and autoimmunity. Allergy 2022; 2022(77): 3567–83. <https://doi.org/10.1111/all.15505> <PubMed>
35. Amulic B, Cazalet Ch, Hayes G, et al. Mechanisms regulating neutrophil responses in immunity, allergy and autoimmunity. Annual review of Immunology 2012; 2012(30): 459–89. <https://doi.org/10.1146/annurev-immunol-020711-074942>
36. Mobus L, Rodriguez E, Harder I, et al. Elevated NK-cell transcriptional signature and dysbalance of resting and activated NK cells in atopic dermatitis. Journal of Allergy and Clinical Immunology 2021; 147(5): 1959-1965. <https://doi.org/10.1016/j.jaci.2020.11.022>
37. Shiraki Y, Ishibashi Y, Hiruma M, et al. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 2006; 55: 1175-85. <https://doi.org/10.1099/jmm.0.46632-0>
38. Kabashima K, Weidinger S. NK cells as a possible new player in atopic dermatitis. The Journal of Allergy and Clinical Immunology 2020; 146(2): 276-277. <https://doi.org/10.1016/j.jaci.2020.04.052>
39. Simon D, Hosli S, Kostylina G, et AL. Anti-CD20 (rituximab) treatment improves atopic dermatitis. J Allergy Clin Immunol 2008; 121(1): 122–8. <https://doi.org/10.1016/j.jaci.2007.11.016>
40. Montes-torres A, Llamas-Velasco M, Perez-Plaza A, et al. Biological treatments in atopic dermatitis. J Clin Med 2015; 4(4): 593–613. <https://doi.org/10.3390/jcm4040593> <PubMed>
41. Gittler JK, Shemer A, Suarez-Farinas M, et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012; 130: 1344–54. <https://doi.org/10.1016/j.jaci.2012.07.012> <PubMed>
42. Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell responses in vivo via CD23 B cells. J Allergy Clin Immunol 2005; 175(3): 1473–82.
43. Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76(7): 1981–9. <https://doi.org/10.1111/all.14724> <PubMed>
44. Mucha S, Baurecht H, Novak N, et al. Protein-coding variants contribute to the risk of atopic dermatitis and skin-specific gene expression. J Allergy Clin Immunol 2020; 145(4): 1208–18. <https://doi.org/10.1016/j.jaci.2019.10.030>
45. Baylet A, Laclaverie M, Marchand L, et al. Immunotherapies in cutaneous pathologies: an overview. Drug Discov Today 2021; 26(1): 248–55. <https://doi.org/10.1016/j.drudis.2020.10.023>
46. Xiong Z. CD200 checkpoint reversal: a novel approach to immunotherapy. Clin Cancer Res 2020; 26: 32–241. <https://doi.org/10.1158/1078-0432.CCR-19-2234>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive