Acta Med. 2023, 66: 11-18

https://doi.org/10.14712/18059694.2023.9

Wireless Monitoring of Gastrointestinal Transit Time, Intra-luminal pH, Pressure and Temperature in Experimental Pigs: A Pilot Study

Jan Bureša,b,c, Věra Radochovád, Jaroslav Květinaa, Darina Kohoutováa,e, Martin Vališf, Stanislav Rejchrtg, Jana Žďárová Karasováh, Ondřej Soukupa, Štěpán Suchánekb,c, Miroslav Zavoralb,c

aBiomedical Research Centre, University Hospital Hradec Králové, Czech Republic
bDepartment of Medicine, Charles University, First Faculty of Medicine, Praha and Military University Hospital Praha, Czech Republic
cInstitute of Gastrointestinal Oncology, Military University Hospital Praha, Czech Republic
dAnimal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
eThe Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
fDepartment of Neurology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
g2nd Department of Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
hDepartment of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic

Received January 1, 2023
Accepted March 21, 2023

References

1. Said H (ed). Physiology of the Gastrointestinal Tract. 6th Edition. London: Academic Press, 2018.
2. Solnes LB, Sheikhbahaei S, Ziessman HA. Nuclear Scintigraphy in Practice: Gastrointestinal Motility. AJR Am J Roentgenol 2018; 211(2): 260–6. <https://doi.org/10.2214/AJR.18.19787>
3. Chae S, Richter JE. Wireless 24, 48, and 96 Hour or Impedance or Oropharyngeal Prolonged pH Monitoring: Which Test, When, and Why for GERD? Curr Gastroenterol Rep 2018; 20(11): 52. <https://doi.org/10.1007/s11894-018-0659-0>
4. Shim LSE, Ngu MC, Yau Y, Russo R. Reflux scintigraphy in gastro-esophageal reflux disease: a comparison study with 24 hour pH-impedance monitoring. Scand J Gastroenterol 2022 Jan 21: 1–5. <https://doi.org/10.1080/00365521.2022.2029937>
5. Jehangir A, Malik Z, Parkman HP. Characterizing reflux on high resolution esophageal manometry with impedance. BMC Gastroenterol 2022; 22(1): 112. <https://doi.org/10.1186/s12876-022-02194-0> <PubMed>
6. Yadlapati R, Gyawali CP, Pandolfino JE; CGIT GERD Consensus Conference Participants. AGA Clinical Practice Update on the Personalized Approach to the Evaluation and Management of GERD: Expert Review. Clin Gastroenterol Hepatol 2022; 20(5): 984–994.e1. <https://doi.org/10.1016/j.cgh.2022.01.025> <PubMed>
7. Zhang J, Wang X, Wang J, et al. Does hypopharyngeal-esophageal multichannel intraluminal impedance-pH monitoring for the diagnosis of laryngopharyngeal reflux have to be 24 h? Eur Arch Otorhinolaryngol 2022; 279(11): 5323–9. <https://doi.org/10.1007/s00405-022-07554-w>
8. Chen JZ, McCallum RW (eds). Electrogastrography. Principles and Applications. NewYork: Raven Press, 1994.
9. Parkman HP, Hasler WL, Barnett JL, Eaker EY. American Motility Society Clinical GI Motility Testing Task Force. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003; 15(2): 89–102. <https://doi.org/10.1046/j.1365-2982.2003.00396.x>
10. Koch KL, Stern RM. Handbook of Electrogastrography. Oxford: Oxford University Press, 2004.
11. Bureš J, Kopáčová M, Voříšek V, et al. Correlation of electrogastrography and gastric emptying rate estimated by 13C-octanoic acid breath test in healthy volunteers. Folia Gastroenterol Hepatol 2007; 5(1): 5–11.
12. Bureš J, Kabeláč K, Kopáčová M, et al. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy. Hepato-Gastroenterology 2008; 55(85): 1492–6.
13. O’Grady G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. Gastroenterol Clin North Am 2015; 44(1): 169–84. <https://doi.org/10.1016/j.gtc.2014.11.013> <PubMed>
14. Carlson DA, Kahrilas PJ, Lin Z, et al. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe. Am J Gastroenterol 2016; 111(12): 1726–35. <https://doi.org/10.1038/ajg.2016.454> <PubMed>
15. Desprez C, Roman S, Leroi AM, Gourcerol G. The use of impedance planimetry (Endoscopic Functional Lumen Imaging Probe, EndoFLIP) in the gastrointestinal tract: A systematic review. Neurogastroenterol Motil 2020; 32(9): e13980.
16. McCallum RW, Parkman HP (eds). Gastroparesis. Pathophysiology, Clinical Presentation, Diagnosis and Treatment. London: Academic Press, 2021.
17. Kamiya T, Fukuta H, Hagiwara H, Shikano M, Kato T, Imaeda K. Disturbed gastric motility in patients with long-standing diabetes mellitus. J Smooth Muscle Res 2022; 58(1): 1–10. <https://doi.org/10.1540/jsmr.58.1> <PubMed>
18. Martinek J, Hustak R, Mares J, et al. Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial. Gut 2022; 71(11): 2170–8. <https://doi.org/10.1136/gutjnl-2022-326904> <PubMed>
19. Van Den Driessche M, Van Malderen N, Geypens B, Ghoos Y, Veereman-Wauters G. Lactose-(13C)ureide breath test: a new, noninvasive technique to determine orocecal transit time in children. J Pediatr Gastroenterol Nutr 2000; 31(4): 433–8. <https://doi.org/10.1097/00005176-200010000-00019>
20. Cremonini F, Mullan BP, Camilleri M, Burton DD, Rank MR. Performance characteristics of scintigraphic transit measurements for studies of experimental therapies. Aliment Pharmacol Ther 2002; 16(10): 1781–90. <https://doi.org/10.1046/j.1365-2036.2002.01344.x>
21. Hammer HF, Fox MR, Keller J, et al. European H2-CH4-breath test group. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. United European Gastroenterol J 2022; 10(1): 15–40. <https://doi.org/10.1002/ueg2.12133> <PubMed>
22. Challis C, Hori A, Sampson TR, et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci 2020; 23(3): 327–36. <https://doi.org/10.1038/s41593-020-0589-7> <PubMed>
23. Bureš J, Cyrany J, Kohoutová D, et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 2010; 16(24): 2978–90. <https://doi.org/10.3748/wjg.v16.i24.2978> <PubMed>
24. Quigley EMM, Murray JA, Pimentel M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. Gastroenterology 2020; 159(4): 1526–32. <https://doi.org/10.1053/j.gastro.2020.06.090>
25. Bushyhead D, Quigley EMM. Small Intestinal Bacterial Overgrowth – Pathophysiology and Its Implications for Definition and Management. Gastroenterology 2022; 163(3): 593–607. <https://doi.org/10.1053/j.gastro.2022.04.002>
26. Saad RJ, Hasler WL. A technical review and clinical assessment of the wireless motility capsule. Gastroenterol Hepatol (NY) 2011; 7(12): 795–804.
27. Farmer AD, Scott SM, Hobson AR. Gastrointestinal motility revisited: The wireless motility capsule. United European Gastroenterol J 2013; 1(6): 413–21. <https://doi.org/10.1177/2050640613510161> <PubMed>
28. Saad RJ. The Wireless Motility Capsule: A One-Stop Shop for the Evaluation of GI Motility Disorders. Curr Gastroenterol Rep 2016; 18(3): 14. <https://doi.org/10.1007/s11894-016-0489-x>
29. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 1995; 30(1): 1–15. <https://doi.org/10.1007/s11095-012-0911-5>
30. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16(5): 351–80. <https://doi.org/10.1002/bdd.2510160502>
31. Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166(1): 12–27. <https://doi.org/10.1016/j.trsl.2015.01.004> <PubMed>
32. Henze LJ, Koehl NJ, Bennett-Lenane H, et al. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur J Pharm Sci 2021; 156: 105627. <https://doi.org/10.1016/j.ejps.2020.105627>
33. Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol 2018; 123(3): 233–5. <https://doi.org/10.1111/bcpt.13059>
34. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 2009.
35. Bureš J, Květina J, Tachecí I, et al. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed 2015; 13(4): 273–7. <https://doi.org/10.1016/j.jab.2015.04.004>
36. Bureš J, Květina J, Radochová V, et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One 2020; 15(1): e0227781. <https://doi.org/10.1371/journal.pone.0227781> <PubMed>
37. Bureš J, Tachecí I, Květina J, et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules 2021; 26(8): 2160. <https://doi.org/10.3390/molecules26082160> <PubMed>
38. Bureš J, Tachecí I, Květina J, et al. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel) 2021; 14(6): 590. <https://doi.org/10.3390/ph14060590> <PubMed>
39. Rauch S, Muellenbach RM, Johannes A, Zollhöfer B, Roewer N. Gastric pH and motility in a porcine model of acute lung injury using a wireless motility capsule. Med Sci Monit 2011; 17(7): BR161–164. <https://doi.org/10.12659/MSM.881841> <PubMed>
40. Rauch S, Johannes A, Zollhöfer B, Muellenbach RM. Evaluating intra-abdominal pressures in a porcine model of acute lung injury by using a wireless motility capsule. Med Sci Monit 2012; 18(5): BR163–166. <https://doi.org/10.12659/MSM.882724> <PubMed>
41. Warrit K, Boscan P, Ferguson LE, et al. Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH. Vet J 2017; 227: 36–41. <https://doi.org/10.1016/j.tvjl.2017.08.005>
42. Bureš J, Květina J, Radochová V, et al. Effect of ketamine, an NMDA-receptor antagonist, on gastric myoelectric activity in experimental pigs. Gastroent Hepatol 2022; 76(4): 309–18. <https://doi.org/10.48095/ccgh2022309>
43. Sarosiek I, Selover KH, Katz LA, et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment Pharmacol Ther 2010; 31(2): 313–22.
44. Lalezari D. Gastrointestinal pH profile in subjects with irritable bowel syndrome. Ann Gastroenterol 2012; 25(4): 333–7.
45. Rozov-Ung I, Mreyoud A, Moore J, et al. Detection of drug effects on gastric emptying and contractility using a wireless motility capsule. BMC Gastroenterol 2014; 14: 2. <https://doi.org/10.1186/1471-230X-14-2> <PubMed>
46. Sangnes DA, Søfteland E, Bekkelund M, Frey J, Biermann M, Gilja OH, Dimcevski G. Wireless motility capsule compared with scintigraphy in the assessment of diabetic gastroparesis. Neurogastroenterol Motil 2020; 32(4): e13771. <https://doi.org/10.1111/nmo.13771>
47. Redlich J, Souffrant WB, Laplace JP, Hennig U, Berg R, Mouwen JM. Morphometry of the small intestine in pigs with ileo-rectal anastomosis. Can J Vet Res 1997; 61(1): 21–7.
48. Adeola O, King DE. Developmental changes in morphometry of the small intestine and jejunal sucrase activity during the first nine weeks of postnatal growth in pigs. J Anim Sci 2006; 84(1): 112–8. <https://doi.org/10.2527/2006.841112x>
49. Montagne L, Boudry G, Favier C, Le Huërou-Luron I, Lallès JP, Sève B. Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br J Nutr 2007; 97(1): 45–57. <https://doi.org/10.1017/S000711450720580X>
50. Bureš J, Pejchal J, Květina J, et al. Morphometric analysis of the porcine gastrointestinal tract in a 10-day high-dose indomethacin administration with or without probiotic bacteria Escherichia coli Nissle 1917. Hum Exp Toxicol 2011; 30(12): 1955–62. <https://doi.org/10.1177/0960327111403174>
51. Al Masri S, Hünigen H, Al Aiyan A, et al. Influence of age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine. J Swine Health Prod 2015; 23(4): 186–203.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive