Acta Med. 2023, 66: 11-18
https://doi.org/10.14712/18059694.2023.9
Wireless Monitoring of Gastrointestinal Transit Time, Intra-luminal pH, Pressure and Temperature in Experimental Pigs: A Pilot Study
References
1. Said H (ed). Physiology of the Gastrointestinal Tract. 6th Edition. London: Academic Press, 2018.
2. AJR Am J Roentgenol 2018; 211(2): 260–6.
< LB, Sheikhbahaei S, Ziessman HA. Nuclear Scintigraphy in Practice: Gastrointestinal Motility. https://doi.org/10.2214/AJR.18.19787>
3. Curr Gastroenterol Rep 2018; 20(11): 52.
< S, Richter JE. Wireless 24, 48, and 96 Hour or Impedance or Oropharyngeal Prolonged pH Monitoring: Which Test, When, and Why for GERD? https://doi.org/10.1007/s11894-018-0659-0>
4. Scand J Gastroenterol 2022 Jan 21: 1–5.
< LSE, Ngu MC, Yau Y, Russo R. Reflux scintigraphy in gastro-esophageal reflux disease: a comparison study with 24 hour pH-impedance monitoring. https://doi.org/10.1080/00365521.2022.2029937>
5. BMC Gastroenterol 2022; 22(1): 112.
< A, Malik Z, Parkman HP. Characterizing reflux on high resolution esophageal manometry with impedance. https://doi.org/10.1186/s12876-022-02194-0>
<PubMed>
6. Clin Gastroenterol Hepatol 2022; 20(5): 984–994.e1.
< R, Gyawali CP, Pandolfino JE; CGIT GERD Consensus Conference Participants. AGA Clinical Practice Update on the Personalized Approach to the Evaluation and Management of GERD: Expert Review. https://doi.org/10.1016/j.cgh.2022.01.025>
<PubMed>
7. Eur Arch Otorhinolaryngol 2022; 279(11): 5323–9.
< J, Wang X, Wang J, et al. Does hypopharyngeal-esophageal multichannel intraluminal impedance-pH monitoring for the diagnosis of laryngopharyngeal reflux have to be 24 h? https://doi.org/10.1007/s00405-022-07554-w>
8. Chen JZ, McCallum RW (eds). Electrogastrography. Principles and Applications. NewYork: Raven Press, 1994.
9. Neurogastroenterol Motil 2003; 15(2): 89–102.
< HP, Hasler WL, Barnett JL, Eaker EY. American Motility Society Clinical GI Motility Testing Task Force. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. https://doi.org/10.1046/j.1365-2982.2003.00396.x>
10. Koch KL, Stern RM. Handbook of Electrogastrography. Oxford: Oxford University Press, 2004.
11. Folia Gastroenterol Hepatol 2007; 5(1): 5–11.
J, Kopáčová M, Voříšek V, et al. Correlation of electrogastrography and gastric emptying rate estimated by 13C-octanoic acid breath test in healthy volunteers.
12. Hepato-Gastroenterology 2008; 55(85): 1492–6.
J, Kabeláč K, Kopáčová M, et al. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy.
13. Gastroenterol Clin North Am 2015; 44(1): 169–84.
< G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. https://doi.org/10.1016/j.gtc.2014.11.013>
<PubMed>
14. Am J Gastroenterol 2016; 111(12): 1726–35.
< DA, Kahrilas PJ, Lin Z, et al. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe. https://doi.org/10.1038/ajg.2016.454>
<PubMed>
15. Neurogastroenterol Motil 2020; 32(9): e13980.
C, Roman S, Leroi AM, Gourcerol G. The use of impedance planimetry (Endoscopic Functional Lumen Imaging Probe, EndoFLIP) in the gastrointestinal tract: A systematic review.
16. McCallum RW, Parkman HP (eds). Gastroparesis. Pathophysiology, Clinical Presentation, Diagnosis and Treatment. London: Academic Press, 2021.
17. J Smooth Muscle Res 2022; 58(1): 1–10.
< T, Fukuta H, Hagiwara H, Shikano M, Kato T, Imaeda K. Disturbed gastric motility in patients with long-standing diabetes mellitus. https://doi.org/10.1540/jsmr.58.1>
<PubMed>
18. Gut 2022; 71(11): 2170–8.
< J, Hustak R, Mares J, et al. Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial. https://doi.org/10.1136/gutjnl-2022-326904>
<PubMed>
19. J Pediatr Gastroenterol Nutr 2000; 31(4): 433–8.
< M, Van Malderen N, Geypens B, Ghoos Y, Veereman-Wauters G. Lactose-(13C)ureide breath test: a new, noninvasive technique to determine orocecal transit time in children. https://doi.org/10.1097/00005176-200010000-00019>
20. Aliment Pharmacol Ther 2002; 16(10): 1781–90.
< F, Mullan BP, Camilleri M, Burton DD, Rank MR. Performance characteristics of scintigraphic transit measurements for studies of experimental therapies. https://doi.org/10.1046/j.1365-2036.2002.01344.x>
21. United European Gastroenterol J 2022; 10(1): 15–40.
< HF, Fox MR, Keller J, et al. European H2-CH4-breath test group. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. https://doi.org/10.1002/ueg2.12133>
<PubMed>
22. Nat Neurosci 2020; 23(3): 327–36.
< C, Hori A, Sampson TR, et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. https://doi.org/10.1038/s41593-020-0589-7>
<PubMed>
23. World J Gastroenterol 2010; 16(24): 2978–90.
< J, Cyrany J, Kohoutová D, et al. Small intestinal bacterial overgrowth syndrome. https://doi.org/10.3748/wjg.v16.i24.2978>
<PubMed>
24. Gastroenterology 2020; 159(4): 1526–32.
< EMM, Murray JA, Pimentel M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. https://doi.org/10.1053/j.gastro.2020.06.090>
25. Gastroenterology 2022; 163(3): 593–607.
< D, Quigley EMM. Small Intestinal Bacterial Overgrowth – Pathophysiology and Its Implications for Definition and Management. https://doi.org/10.1053/j.gastro.2022.04.002>
26. Gastroenterol Hepatol (NY) 2011; 7(12): 795–804.
RJ, Hasler WL. A technical review and clinical assessment of the wireless motility capsule.
27. United European Gastroenterol J 2013; 1(6): 413–21.
< AD, Scott SM, Hobson AR. Gastrointestinal motility revisited: The wireless motility capsule. https://doi.org/10.1177/2050640613510161>
<PubMed>
28. Curr Gastroenterol Rep 2016; 18(3): 14.
< RJ. The Wireless Motility Capsule: A One-Stop Shop for the Evaluation of GI Motility Disorders. https://doi.org/10.1007/s11894-016-0489-x>
29. Pharm Res 1995; 30(1): 1–15.
< C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. https://doi.org/10.1007/s11095-012-0911-5>
30. Biopharm Drug Dispos 1995; 16(5): 351–80.
< TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. https://doi.org/10.1002/bdd.2510160502>
31. Transl Res 2015; 166(1): 12–27.
< LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. https://doi.org/10.1016/j.trsl.2015.01.004>
<PubMed>
32. Eur J Pharm Sci 2021; 156: 105627.
< LJ, Koehl NJ, Bennett-Lenane H, et al. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. https://doi.org/10.1016/j.ejps.2020.105627>
33. Basic Clin Pharmacol Toxicol 2018; 123(3): 233–5.
< P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. https://doi.org/10.1111/bcpt.13059>
34. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 2009.
35. J Appl Biomed 2015; 13(4): 273–7.
< J, Květina J, Tachecí I, et al. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. https://doi.org/10.1016/j.jab.2015.04.004>
36. PLoS One 2020; 15(1): e0227781.
< J, Květina J, Radochová V, et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. https://doi.org/10.1371/journal.pone.0227781>
<PubMed>
37. Molecules 2021; 26(8): 2160.
< J, Tachecí I, Květina J, et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. https://doi.org/10.3390/molecules26082160>
<PubMed>
38. Pharmaceuticals (Basel) 2021; 14(6): 590.
< J, Tachecí I, Květina J, et al. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. https://doi.org/10.3390/ph14060590>
<PubMed>
39. Med Sci Monit 2011; 17(7): BR161–164.
< S, Muellenbach RM, Johannes A, Zollhöfer B, Roewer N. Gastric pH and motility in a porcine model of acute lung injury using a wireless motility capsule. https://doi.org/10.12659/MSM.881841>
<PubMed>
40. Med Sci Monit 2012; 18(5): BR163–166.
< S, Johannes A, Zollhöfer B, Muellenbach RM. Evaluating intra-abdominal pressures in a porcine model of acute lung injury by using a wireless motility capsule. https://doi.org/10.12659/MSM.882724>
<PubMed>
41. Vet J 2017; 227: 36–41.
< K, Boscan P, Ferguson LE, et al. Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH. https://doi.org/10.1016/j.tvjl.2017.08.005>
42. Gastroent Hepatol 2022; 76(4): 309–18.
< J, Květina J, Radochová V, et al. Effect of ketamine, an NMDA-receptor antagonist, on gastric myoelectric activity in experimental pigs. https://doi.org/10.48095/ccgh2022309>
43. Aliment Pharmacol Ther 2010; 31(2): 313–22.
I, Selover KH, Katz LA, et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology.
44. Ann Gastroenterol 2012; 25(4): 333–7.
D. Gastrointestinal pH profile in subjects with irritable bowel syndrome.
45. BMC Gastroenterol 2014; 14: 2.
< I, Mreyoud A, Moore J, et al. Detection of drug effects on gastric emptying and contractility using a wireless motility capsule. https://doi.org/10.1186/1471-230X-14-2>
<PubMed>
46. Neurogastroenterol Motil 2020; 32(4): e13771.
< DA, Søfteland E, Bekkelund M, Frey J, Biermann M, Gilja OH, Dimcevski G. Wireless motility capsule compared with scintigraphy in the assessment of diabetic gastroparesis. https://doi.org/10.1111/nmo.13771>
47. Can J Vet Res 1997; 61(1): 21–7.
J, Souffrant WB, Laplace JP, Hennig U, Berg R, Mouwen JM. Morphometry of the small intestine in pigs with ileo-rectal anastomosis.
48. J Anim Sci 2006; 84(1): 112–8.
< O, King DE. Developmental changes in morphometry of the small intestine and jejunal sucrase activity during the first nine weeks of postnatal growth in pigs. https://doi.org/10.2527/2006.841112x>
49. Br J Nutr 2007; 97(1): 45–57.
< L, Boudry G, Favier C, Le Huërou-Luron I, Lallès JP, Sève B. Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. https://doi.org/10.1017/S000711450720580X>
50. Hum Exp Toxicol 2011; 30(12): 1955–62.
< J, Pejchal J, Květina J, et al. Morphometric analysis of the porcine gastrointestinal tract in a 10-day high-dose indomethacin administration with or without probiotic bacteria Escherichia coli Nissle 1917. https://doi.org/10.1177/0960327111403174>
51. J Swine Health Prod 2015; 23(4): 186–203.
S, Hünigen H, Al Aiyan A, et al. Influence of age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine.