Acta Med. 2023, 66: 1-10

https://doi.org/10.14712/18059694.2023.8

Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review

Walter Martinez Loaizaa, Anny Katheryne Rivera Ruiza, Cristian Camilo Ospina Patiñoa, Mónica Chavez Vivasb,c

aMedicine Program, Faculty of Health, Universidad Santiago de Cali, Colombia
bInvestigation Group GIMMEIN, Colombia
cMedicine Program, Faculty of Health Sciences, Universidad Libre, Cali, Colombia

Received June 29, 2022
Accepted March 1, 2023

References

1. Boszczowski Í, Neto FC, Blangiardo M, et al. Total antibiotic use in a state-wide area and resistance patterns in Brazilian hospitals: an ecologic study. Brazilian J Infect Dis 2020; 24: 479–88. <https://doi.org/10.1016/j.bjid.2020.08.012> <PubMed>
2. Sutherland T, Mpirimbanyi C, Nziyomaze E, et al. Widespread antimicrobial resistance among bacterial infections in a Rwandan referral hospital. PLoS One 2019; 14: e0221121. <https://doi.org/10.1371/journal.pone.0221121> <PubMed>
3. Moolchandani K, Sastry AS, Deepashree R, Sistla S, Harish BN, Mandal J. Antimicrobial resistance surveillance among intensive care units of a tertiary care hospital in South India. J Clin Diagnostic Res 2017; 11: DC01-7.
4. Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community-and hospital-acquired Klebsiella Pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms 2019; 7: 1–14. <https://doi.org/10.3390/microorganisms7050138> <PubMed>
5. Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the International Network for Optimal Resistance Monitoring program in the United States. Antimicrob Agents Chemother 2017; 61: e02252-16. <https://doi.org/10.1128/AAC.02252-16> <PubMed>
6. Camacho-Silvas, Sánchez-González JM, Velo-Méndez G, Duque-Rodríguez J, Velo-Méndez G, Ishida-Gutiérrez MC. Factores clínicos asociados a la resistencia bacteriana en el Norte de México. Rev Mex Patol Clínica y Med Lab 2020; 67: 205–9.
7. Saxena S, Priyadarshi M, Saxena A, Singh R. Antimicrobial consumption and bacterial resistance pattern in patients admitted in I.C.U at a tertiary care center. J Infect Public Health 2019; 12: 695–9. <https://doi.org/10.1016/j.jiph.2019.03.014>
8. Frattari A, Savini V, Polilli E, et al. Control of Gram-negative multi-drug resistant microorganisms in an Italian ICU: Rapid decline as a result of a multifaceted intervention, including conservative use of antibiotics. Int J Infect Dis 2019; 84: 153–62. <https://doi.org/10.1016/j.ijid.2019.04.002>
9. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–81. <https://doi.org/10.1111/j.1469-0691.2011.03570.x>
10. López-Durán PA, Fonseca-Coronado S, Lozano-Trenado LM, et al. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. PLoS One 2020; 15: e0231829. <https://doi.org/10.1371/journal.pone.0231829> <PubMed>
11. Awoke T, Teka B, Seman A, et al. High prevalence of multidrug-resistant Klebsiella pneumoniae in a tertiary care hospital in Ethiopia. Antibiotics 2021; 10: 1–9. <https://doi.org/10.3390/antibiotics10081007> <PubMed>
12. Poletajew S, Pawlik K, Bonder-Nowicka A, Pakuszewski A, Nyk Ł, Kryst P. Multi-drug resistant bacteria as aetiological factors of infections in a tertiary multidisciplinary hospital in poland. Antibiotics 2021; 10: 1–10. <https://doi.org/10.3390/antibiotics10101232> <PubMed>
13. Stefanini I, Boni M, Silvaplana P, et al. Antimicrobial resistance, an update from the ward: Increased incidence of new potential pathogens and site of infection-specific antibacterial resistances. Antibiotics 2020; 9: 1–14. <https://doi.org/10.3390/antibiotics9090631> <PubMed>
14. Fursova AD, Fursov MV, Astashkin EI, et al. Early Response of Antimicrobial Resistance and Virulence Genes Expression in Classical, Hypervirulent, and Hybrid hvKp-MDR Klebsiella pneumoniae on Antimicrobial Stress. Antibiotics 2022; 11: 7. <https://doi.org/10.3390/antibiotics11010007> <PubMed>
15. Durdu B, Meric Koc M, Hakyemez IN, et al. Risk factors affecting patterns of antibiotic resistance and treatment efficacy in extreme drug resistance in intensive care unit-acquired Klebsiella pneumoniae infections: A 5-year analysis. Med Sci Monit 2019; 25: 174–83. <https://doi.org/10.12659/MSM.911338> <PubMed>
16. Buetti N, Marschall J, Timsit JF, et al. Distribution of pathogens and antimicrobial resistance in bacteraemia according to hospitalization duration: a nationwide surveillance study in Switzerland. Clin Microbiol Infect 2021; 27: 1820–5. <https://doi.org/10.1016/j.cmi.2021.04.025>
17. Estaleva CEL, Zimba TF, Sekyere JO, et al. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect Dis 2021; 21: 16. <https://doi.org/10.1186/s12879-020-05696-y> <PubMed>
18. Adekunle C, Mustapha A, Odewale G, Ojedele RO. Detection of Antibiotic Resistance Genes Among Multiple Drug Resistant Pseudomonas Aeruginosa Isolated from Clinical Sources in Selected Health Institutions in Kwara State. Infect Disord Drug Targets 2021; 21: e170721187999. <https://doi.org/10.2174/1871526520666201116103625>
19. Alemayehu T, Ali M, Mitiku E, Hailemariam M. The burden of antimicrobial resistance at tertiary care hospital, southern Ethiopia: a three years’ retrospective study. BMC Infectious Diseases 2019; 19: 585 <https://doi.org/10.1186/s12879-019-4210-1> <PubMed>
20. Kishk R, Nemr N, Soliman N, Riad E, Ahmed MM, Soliman NM. High-Level Aminoglycoside and Vancomycin Resistance in Enterococcus spp. Isolated from Hospital Acquired Infections, Ismailia, Egypt. Egypt J Med Microbiol 2021; 30: 113–9. <https://doi.org/10.21608/ejmm.2021.197469>
21. Mohamed ES, Khairy RMM, Abdelrahim SS. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob Resist Infect Control 2020; 9: 1–9. <https://doi.org/10.1186/s13756-020-00856-w> <PubMed>
22. Yehouenou CL, Bogaerts B, De Keersmaecker SCJ, et al. Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected from Hospital Patients in Benin in 2019. Front Microbiol 2021; 12: 752883. <https://doi.org/10.3389/fmicb.2021.752883> <PubMed>
23. Makanjuola OB, Fayemiwo SA, Okesola AO, et al. Pattern of multidrug resistant bacteria associated with intensive care unit infections in Ibadan, Nigeria. Ann Ib Postgrad Med 2018; 16: 162–9.
24. Birru M, Woldemariam M, Manilal A, et al. Bacterial profile, antimicrobial susceptibility patterns, and associated factors among bloodstream infection suspected patients attending Arba Minch General Hospital, Ethiopia. Sci Rep 2021; 11: 15882. <https://doi.org/10.1038/s41598-021-95314-x> <PubMed>
25. Negeri AA, Mamo H, Gurung JM, et al. Antimicrobial Resistance Profiling and Molecular Epidemiological Analysis of Extended Spectrum β-Lactamases Produced by Extraintestinal Invasive Escherichia coli Isolates from Ethiopia: The Presence of International High-Risk Clones ST131 and ST410 Revealed. Front Microbiol 2021; 12: 1–13. <https://doi.org/10.3389/fmicb.2021.706846> <PubMed>
26. Shash RY, Elshimy AA, Soliman MY, Mosharafa AA. Molecular characterization of extended-spectrum β-lactamase enterobacteriaceae isolated from egyptian patients with community- and hospital-acquired urinary tract infection. Am J Trop Med Hyg 2019; 100: 522–8. <https://doi.org/10.4269/ajtmh.18-0396> <PubMed>
27. El-Mahdy R, El-Kannishy G, Salama H. Hypervirulent Klebsiella pneumoniae as a hospital-acquired pathogen in the intensive care unit in Mansoura, Egypt. Germs 2018; 140–6. <https://doi.org/10.18683/germs.2018.1141> <PubMed>
28. El-Mahdy R, El-Kannishy G. Virulence factors of carbapenem-resistant pseudomonas aeruginosa in hospital-acquired infections in Mansoura, Egypt. Infect Drug Resist 2019; 12: 3455–61. <https://doi.org/10.2147/IDR.S222329> <PubMed>
29. Daef E, Elsherbiny N, Thabit A, Wageah EM. Multidrug resistant Stenotrophomonas maltophilia: an emerging cause of hospital acquired infections in Assiut University Hospitals, Egypt. Int J Infect Control 2017; 13: 1–13.
30. Mohamed A, Daef E, Nafie A, Shaban L, Ibrahim M. Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia. Antibiotics 2021; 10: 1325. <https://doi.org/10.3390/antibiotics10111325> <PubMed>
31. El-Sweify M, Raheel A, Aboul-Atta H, El-Hadidy G, Hessam W. Identification of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) causing hospital-acquired infections in Suez Canal University Hospitals, Egypt by detection of its major virulence determinants. Microbes and Infectious Diseases 2021; 2: 715–24.
32. Elbadawi HS, Elhag, KM, Mahgoub E, et al. Detection and characterization of carbapenem resistant Gram‐negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol 2021; 21: 136. <https://doi.org/10.1186/s12866-021-02133-1> <PubMed>
33. Ssekatawa K, Byarugaba DK, Nakavuma JL, et al. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob Resist Infect Control 2021; 10: 57. <https://doi.org/10.1186/s13756-021-00923-w> <PubMed>
34. Esmail MAM, Abdulghany HM, Khairy RM. Prevalence of Multidrug-Resistant Enterococcus faecalis in Hospital-Acquired Surgical Wound Infections and Bacteremia: Concomitant Analysis of Antimicrobial Resistance Genes. Infect Dis Res Treat 2019; 12: 117863371988292.
35. Jain P, Bepari AK, Sen PK, et al. High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Sci Rep. 2021; 111: 22859. <https://doi.org/10.1038/s41598-021-02251-w> <PubMed>
36. Tian Y, Yu H, Wang Z. Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC Res Notes 2019; 12: 12–6. <https://doi.org/10.1186/s13104-019-4064-z> <PubMed>
37. Si-Tuan N, Ngoc HM, Hang PTT, Nguyen C, Van PH, Huong NT. New eight genes identified at the clinical multidrug-resistant Acinetobacter baumannii DMS06669 strain in a Vietnam hospital. Ann Clin Microbiol Antimicrob 2017; 16: 1–7. <https://doi.org/10.1186/s12941-017-0250-9> <PubMed>
38. Dagher C, Salloum T, Alousi S, Arabaghian H, Araj GF, Tokajian S. Molecular characterization of carbapenem resistant Escherichia coli recovered from a tertiary hospital in Lebanon. PLoS One 2018; 13: 1–13. <https://doi.org/10.1371/journal.pone.0203323> <PubMed>
39. Ranjbar R, Kelishadrokhi AF, Chehelgerdi M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect Drug Resist 2019; 12: 603–11. <https://doi.org/10.2147/IDR.S199639> <PubMed>
40. Komijani M, Bouzari M, Rahimi F. Detection of TEM, SHV and CTX-M Antibiotic Resistance Genes in Escherichia coli Isolates from Infected Wounds. Med Lab J 2017; 11: 30–5.
41. Alqahtani M, Tickler IA, Al Deesi Z, et al. Molecular detection of carbapenem resistance genes in rectal swabs from patients in Gulf Cooperation Council hospitals. J Hosp Infect 2021; 112: 96–103. <https://doi.org/10.1016/j.jhin.2021.03.027>
42. Tunyong W, Arsheewa W, Santajit S, et al. Antibiotic resistance genes among carbapenem-resistant enterobacterales (Cre) isolates of prapokklao hospital, chanthaburi province, Thailand. Infect Drug Resist 2021; 14: 3485–94. <https://doi.org/10.2147/IDR.S328521> <PubMed>
43. Jiang AM, Shi X, Liu N, et al. Nosocomial infections due to multidrug-resistant bacteria in cancer patients: a six-year retrospective study of an oncology Center in Western China. BMC Infect Dis 2020; 20(1): 452. <https://doi.org/10.1186/s12879-020-05181-6> <PubMed>
44. Shankar C, Veeraraghavan B, Nabarro LEB, Ravi R, Ragupathi NKD, Rupali P. Whole genome analysis of hypervirulent Klebsiella pneumoniae isolates from community and hospital acquired bloodstream infection. BMC Microbiol 2018; 18(1): 6. <https://doi.org/10.1186/s12866-017-1148-6> <PubMed>
45. Giri S, Karade S, Sen S. Genotypic characterization of carbapenem resistant Enterobacterales in clinical isolates from western Maharashtra. Indian J Med Microbiol 2021; 39: 500–3. <https://doi.org/10.1016/j.ijmmb.2021.05.008>
46. Sanikhani R, Moeinirad M, Solgi H, Hadadi A, Shahcheraghi F, Badmasti F. The face of hypervirulent Klebsiella pneumoniae isolated from clinical samples of two Iranian teaching hospitals. Ann Clin Microbiol Antimicrob. 2021; 201: 58. <https://doi.org/10.1186/s12941-021-00467-2> <PubMed>
47. Bostanghadiri N, Ardebili A, Ghalavand Z, et al. Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res Notes. 2021; 14: 151. <https://doi.org/10.1186/s13104-021-05567-y> <PubMed>
48. Azimi A, Rezaei F, Yaseri M, Jafari S, Rahbar M, Douraghi M. Emergence of fluoroquinolone resistance and possible mechanisms in clinical isolates of Stenotrophomonas maltophilia from Iran. Sci Rep 2021; 11: 9582. <https://doi.org/10.1038/s41598-021-88977-z> <PubMed>
49. Ghanbari F, Saberianpour S, Zarkesh-Esfahani F, Ghanbari N. Staphy­lococcal Cassette Chromosome mec (SCC mec) Typing of Methicillin-Resistant Staphylococcus aureus Strains Isolated from Community- and Hospital-Acquired Infections. Avicenna J Clin Microbiol Infect. 2017; 4: 42244. <https://doi.org/10.5812/ajcmi.42244>
50. Alneama RT, Al-Massody AJ, Mahmud B, Ghasemian A. The existence and expression of aminoglycoside resistance genes among multidrug-resistant Escherichia coli isolates in intensive care unit centers. Gene Reports 2021; 25: 101315. <https://doi.org/10.1016/j.genrep.2021.101315>
51. Rashvand P, Peymani A, Mohammadi M, et al. Molecular survey of aminoglycoside-resistant Acinetobacter baumannii isolated from tertiary hospitals in Qazvin, Iran. New Microbes New Infect 2021; 42: 100883. <https://doi.org/10.1016/j.nmni.2021.100883> <PubMed>
52. Matta R, Hallit S, Hallit R, Bawab W, Rogues AM, Salameh P. Epidemiology and microbiological profile comparison between community and hospital acquired infections: A multicenter retrospective study in Lebanon. J Infect Public Health 2018; 11: 405–11. <https://doi.org/10.1016/j.jiph.2017.09.005>
53. Pyakurel S, Ansari M, Kattel S, et al. Prevalence of carbapenemase-producing Klebsiella pneumoniae at a tertiary care hospital in Kathmandu, Nepal. Trop Med Health 2021; 49: 78. <https://doi.org/10.1186/s41182-021-00368-2> <PubMed>
54. Gurung S, Kafle S, Dhungel B, et al. Detection of oxa-48 gene in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from urine samples. Infect Drug Resist. 2020; 13: 2311–21. <https://doi.org/10.2147/IDR.S259967> <PubMed>
55. Shrestha LB, Bhattarai NR, Rai K, Khanal B. Antibiotic Resistance and mecA Gene Characterization of Coagulase-negative Staphylococci Isolated from Clinical Samples in Nepal. Infect Drug Resist. 2020; 13: 3163–3169. <https://doi.org/10.2147/IDR.S274163> <PubMed>
56. Singkham-In U, Muhummudaree N, Chatsuwan T. fosA3 overexpression with transporter mutations mediates high-level of fosfomycin resistance and silence of fosA3 in fosfomycin-susceptible Klebsiella pneumoniae producing carbapenemase clinical isolates. PLoS One. 2020; 15: e0237474. <https://doi.org/10.1371/journal.pone.0237474> <PubMed>
57. Trinh P, Thanh L, Ngo-Thi-Bich T, Thanh N-T-T, Linh H-L-Tru, Nguyen T-A. Identification of Acinetobacter baumannii and detection of ß-lactam antibiotic resistance genes in clinical samples by multiplex PCR. ResearchGate 2020.10.1101/2020.10.25.353896.
58. Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop 2019; 52: e20190237. <https://doi.org/10.1590/0037-8682-0237-2019>
59. Khan AA, Ali A, Tharmalingam N, Mylonakis E, Zahra R. First report of mecC gene in clinical methicillin resistant S. aureus (MRSA) from tertiary care hospital Islamabad, Pakistan. J Infect Public Health 2020; 13: 1501–7. <https://doi.org/10.1016/j.jiph.2020.05.017>
60. Yaneth-Giovanetti MC, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Medicina & Laboratorio 2017; 23: 387–98. <https://doi.org/10.36384/01232576.35>
61. Paz Acuña M, Cifuentes M, Silva F, Rojas A, Cerda J, Labarca J. Incidencia de bacterias multi-resistentes en unidades de cuidados intensivos de hospitales Chilenos. Rev Chil Infectol 2017; 34: 570–5.
62. Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, Márquez-Díaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob 2018; 17(1): 34. <https://doi.org/10.1186/s12941-018-0286-5> <PubMed>
63. Pavez M, Troncoso C, Osses I, Salazar R, Illesca V, Reydet P. High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Braz J Infect Dis 2019; 23: 102–10. <https://doi.org/10.1016/j.bjid.2019.03.002> <PubMed>
64. Guerrero-Ceballos DL, Burbano-Rosero EM, Mondragon EI. Characterization of antibiotic-resistant Escherichia coli associated with urinary tract infections in Southern Colombia. Univ Sci. 2020; 25: 463–88. <https://doi.org/10.11144/Javeriana.SC25-3.coar>
65. Gómez RF, Castillo A, Chávez-Vivas M. Characterization of multidrug-resistant Acinetobacter ssp. strains isolated from medical intensive care units in Cali- Colombia. Colomb Med 2017; 48: 183–10.
66. Jain N, Jansone I, Obidenova T, et al. Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context. Antibiotics (Basel) 2021; 10: 791. <https://doi.org/10.3390/antibiotics10070791> <PubMed>
67. Peiffer-Smadja N, Bouadma L, Mathy V, et al. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit Care 2020; 24: 66. <https://doi.org/10.1186/s13054-020-03067-2> <PubMed>
68. Despotovic A, Milosevic B, Milosevic I, et al. Hospital-acquired infections in the adult intensive care unit-Epidemiology, antimicrobial resistance patterns, and risk factors for acquisition and mortality. Am J Infect Control 2020; 48(10): 1211–5. <https://doi.org/10.1016/j.ajic.2020.01.009>
69. Caméléna F, Poncin T, Dudoignon E, et al. Rapid identification of bacteria from respiratory samples of patients hospitalized in intensive care units, with Film Array Pneumonia Panel Plus. Int J Infect Dis 2021; 108: 568–73. <https://doi.org/10.1016/j.ijid.2021.05.074>
70. Conceição T, de Lencastre H, Aires-de-Sousa M. Prevalence of biocide resistance genes and chlorhexidine and mupirocin non-susceptibility in Portuguese hospitals during a 31-year period (1985–2016). J Glob Antimicrob Resist 2021; 24: 169–74. <https://doi.org/10.1016/j.jgar.2020.12.010>
71. Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibfiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated rom Different Clinical Sources. Front Cell Infect Microbiol 2021; 11: 1–11. <https://doi.org/10.3389/fcimb.2021.738223> <PubMed>
72. Ruppé E, Olearo F, Pires D, et al. Clonal or not clonal? Investigating hospital outbreaks of KPC-producing Klebsiella pneumoniae with whole-genome sequencing. Clin Microbiol Infect 2017; 23: 470–5. <https://doi.org/10.1016/j.cmi.2017.01.015>
73. Critchley IA, Cotroneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS ONE 2019; 14: e0220265. <https://doi.org/10.1371/journal.pone.0220265> <PubMed>
74. Sader HS, Castanheira M, Mendes RE, Flamm RK. Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015–17). J Antimicrob Chemother 2018; 73: 3053–9. <https://doi.org/10.1093/jac/dky279>
75. Krawczyk B, Wysocka M, Kotłowski R, Bronk M, Michalik M, Samet A. Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland-commensals or hospital-adapted pathogens? PLoS One 2020; 15: 1–23. <https://doi.org/10.1371/journal.pone.0233504> <PubMed>
76. Alibi S, Ferjani A, Boukadida J, et al. Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital. Sci Rep 2017; 7(1): 9704. <https://doi.org/10.1038/s41598-017-10081-y> <PubMed>
77. Adjei AY, Vasaikar SD, Apalata T, Okuthe EG, Songca SP. Phylogenetic analysis of carbapenem-resistant Acinetobacter baumannii isolated from different sources using Multilocus Sequence Typing Scheme. Infect Genet Evol 2021; 96: 105132. <https://doi.org/10.1016/j.meegid.2021.105132>
78. Yangzom T, Tsering DC, Kar S, Kapil J. Antimicrobial Susceptibility Trends among Pathogens Isolated from Blood: A 6-Year Retrospective Study from a Tertiary Care Hospital in East Sikkim, India. J Lab Physicians 2020; 12: 03–9.
79. Wang H, Min C, Li J, et al. Characterization of fosfomycin resistance and molecular epidemiology among carbapenem-resistant Klebsiella pneumoniae strains from two tertiary hospitals in China. BMC Microbiol 2021; 21: 4–11.
80. Pfaller MA, Shortridge D, Harris KA, et al. Ceftolozane-tazobactam activity against clinical isolates of Pseudomonas aeruginosa from ICU patients with pneumonia: United States, 2015–2018. Int J Infect Dis 2021; 112: 321–6. <https://doi.org/10.1016/j.ijid.2021.09.064>
81. Hagel S, Makarewicz O, Hartung A, et al. ESBL colonization and acquisition in a hospital population: The molecular epidemiology and transmission of resistance genes. PLoS One 2019; 14: 1–13. <https://doi.org/10.1371/journal.pone.0208505> <PubMed>
82. de Luna D, Sánchez JJ, Peguero M, et al. Antimicrobial resistance profiles of microorganisms isolated from hospitalized patients in Dominican Republic. Rev Panam Salud Publica / Pan Am J Public Heal 2020; 44: 1–9. <https://doi.org/10.26633/RPSP.2020.36> <PubMed>
83. Garza-González E, Morfín-Otero R, Mendoza-Olazarán S, et al. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS One 2019; 14: e0209865. <https://doi.org/10.1371/journal.pone.0209865> <PubMed>
84. Sabino SS, Lima CA, Machado LG, et al. Infections and antimicrobial resistance in an adult intensive care unit in a Brazilian hospital and the influence of drug resistance on the thirty-day mortality among patients with bloodstream infections. Rev Soc Bras Med Trop 2020; 53: e20190106. <https://doi.org/10.1590/0037-8682-0106-2019> <PubMed>
85. Delgado-Serrano J, Albarracín Ruiz MJ, Rangel-Vera JA, et al. Antimicrobial Resistance Profiles of Bacterial Isolates in Patients with Urinary Tract Infections in a Reference Center in Bucaramanga. MedUNAB 2020; 23: 414–22. <https://doi.org/10.29375/01237047.3950>
86. Wang Y, Shi X, Zhang J, et al. Wide spread and diversity of mutation in the gyrA gene of quinolone-resistant Corynebacterium striatum strains isolated from three tertiary hospitals in China. Ann Clin Microbiol Antimicrob 2021; 20(1): 1–9. <https://doi.org/10.1186/s12941-021-00477-0> <PubMed>
87. Del Giacomo P, Raffaelli F, Losito AR, Fiori B, Tumbarello M. XDR-Pseudomonas aeruginosa Outside the ICU: Is There Still Place for Colistin? Antibiotics (Basel). 2022; 11:193. <https://doi.org/10.3390/antibiotics11020193> <PubMed>
88. Santella B, Folliero V, Della Rocca M, et al. Distribution of antibiotic resistance among Enterococcus spp. isolated from 2017 to 2018 at the University Hospital “Luigi Vanvitelli” of Naples, Italy. Int J Molecular Clin Microbiol 2019; 9: 1197–204.
89. Mostafa HH, Cameron A, Taffner SM, et al. Genomic Surveillance of Ceftriaxone-Resistant Escherichia coli in Western New York Suggests the Extended-Spectrum β-Lactamase blaCTX-M-27 Is Emerging on Distinct Plasmids in ST38. Front Microbiol 2020; 11: 1747. <https://doi.org/10.3389/fmicb.2020.01747> <PubMed>
90. Shi X, Wang H, Wang X, et al. Molecular characterization and antibiotic resistance of Acinetobacter baumannii in cerebrospinal fluid and blood. PLoS One 2021; 16: e0247418. <https://doi.org/10.1371/journal.pone.0247418> <PubMed>
91. Telling K, Laht M, Brauer A, et al. Multidrug resistant Pseudomonas aeruginosa in Estonian hospitals. BMC Infect Dis 2018; 18: 513. <https://doi.org/10.1186/s12879-018-3421-1> <PubMed>
92. Chavan AR, Kelkar V. Study of healthcare-associated infections in surgical unit in a newly established tertiary care hospital of Nanded, Maharashtra, India. Int J Surg Open 2017; 9: 30–5. <https://doi.org/10.1016/j.ijso.2017.09.005>
93. Mhondoro M, Ndlovu N, Bangure D, et al. Trends in antimicrobial resistance of bacterial pathogens in Harare, Zimbabwe, 2012–2017: a secondary dataset analysis. BMC Infect Dis 2019; 19: 746. <https://doi.org/10.1186/s12879-019-4295-6> <PubMed>
94. Hishinuma T, Uchida H, Tohya M, Shimojima M, Tada T, Kirikae T. Emergence and spread of VIM-type metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolates in Japan. J Glob Antimicrob Resist 2020; 23: 265–8. <https://doi.org/10.1016/j.jgar.2020.09.010>
95. Sader HS, Mendes RE, Streit JM, Carvalhaes CG, Castanheira M. Antimicrobial susceptibility of Gram-negative bacteria from intensive care unit and non-intensive care unit patients from United States hospitals (2018–2020). Diagn Microbiol Infect Dis 2022; 102: 115557. <https://doi.org/10.1016/j.diagmicrobio.2021.115557>
96. Liao F, Mo Z, Gu W, Xu W, Fu X, Zhang YA. A comparative genomic analysis between methicillin-resistant Staphylococcus aureus strains of hospital acquired and community infections in Yunnan province of China. BMC Infect Dis 2020; 20: 137. <https://doi.org/10.1186/s12879-020-4866-6> <PubMed>
97. Zarate M, Barrantes D, Cuicapuza D, et al. Frequency of colistin resistance in Pseudomonas aeruginosa: first report from Peru. Frecuencia de resistencia a la colistina en Pseudomonas aeruginosa: primer reporte en el Perú. Rev Peru Med Exp Salud Publica 2021; 38: 308–12. <https://doi.org/10.17843/rpmesp.2021.382.6977>
98. Galehdar M, Ghane M, Babaeekhou L. Co-occurrence of carbapenemase-encoding genes among Klebsiella pneumoniae clinical isolates: Positive relationship of bla-ndm and bla-sim with imipenem resistance. Jundishapur J Microbiol 2021; 14: e112486. <https://doi.org/10.5812/jjm.112486>
99. Feretzakis G, Loupelis E, Sakagianni A, et al. A 2-year single-centre audit on antibiotic resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and klebsiella pneumoniae strains from an intensive care unit and other wards in a general public hospital in Greece. Antibiotics 2019; 8(2): 62. <https://doi.org/10.3390/antibiotics8020062> <PubMed>
100. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of β-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis 2019; 6(Suppl 1): S69–S78. <https://doi.org/10.1093/ofid/ofz004> <PubMed>
101. Hosu MC, Vasaikar SD, Okuthe GE. Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep 2021; 11: 7110. <https://doi.org/10.1038/s41598-021-86570-y> <PubMed>
102. Remschmidt C, Schneider S, Meyer E, Schroeren-Boersch B, Gastmeier P, Schwab F. Surveillance of Antibiotic Use and Resistance in Intensive Care Units (SARI). Dtsch Arztebl Int 2017; 114: 858–65.
103. Castanheira M, Johnson MG, Yu B, et al. Molecular Characterization of Baseline Enterobacterales and Pseudomonas aeruginosa Isolates from a Phase 3 Nosocomial Pneumonia (ASPECT-NP) Clinical Trial. Antimicrob Agents Chemother 2021; 65: e02461–20. <https://doi.org/10.1128/AAC.02461-20> <PubMed>
104. Liu P, Chen S, Wu ZY, Qi M, Li XY, Liu CX. Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist 2020; 22: 238–43. <https://doi.org/10.1016/j.jgar.2019.12.019>
105. Kammili N, Rani M, Styczynski A, et al. Plasmid-mediated antibiotic resistance among uropathogens in primigravid women-Hyderabad, India. PLoS One 2020; 15: e0232710. <https://doi.org/10.1371/journal.pone.0232710> <PubMed>
106. Pengwen O, Jiang B, Wang J, et al. Virulence-associated characteristics of carbapenem-resistant Klebsiella pneumoniae in hospital-acquired infections: results from a hospital in central China. Res Sq 2019. <https://doi.org/10.21203/rs.2.15544/v1>
107. Bi W, Liu H, Dunstan RA, et al. Extensively Drug-Resistant Klebsiella pneumoniae Causing Nosocomial Bloodstream Infections in China: Molecular Investigation of Antibiotic Resistance Determinants, Informing Therapy, and Clinical Outcomes. Front Microbiol 2017; 8: 1230. <https://doi.org/10.3389/fmicb.2017.01230> <PubMed>
108. Sánchez-García JM, Sorlózano-Puerto A, Navarro-Marí JM, Gutiérrez Fernández J. Evolution of the antibiotic-resistance of microorganisms causing urinary tract infections: A 4-year epidemiological surveillance study in a hospital population. Rev Clin Esp (Barc) 2019; 219: 116–23. <https://doi.org/10.1016/j.rce.2018.07.005>
109. Janjusevic A, Markovic Denic L, Minic R, Grgurevic A, Cirkovic I. Intestinal carriage of vancomycin-resistant Enterococcus spp. among high-risk patients in university hospitals in Serbia: first surveillance report. Ann Clin Microbiol Antimicrob 2021; 20: 18. <https://doi.org/10.1186/s12941-021-00423-0> <PubMed>
110. Mirnezami M, Ranjbar R, Niakan M, Ahmadi MH. Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Iran J Pharm Res 2020; 19(3): 282–7.
111. Kateete DP, Edolu M, Kigozi E, et al. Species, antibiotic susceptibility profiles and van gene frequencies among enterococci isolated from patients at Mulago National Referral Hospital in Kampala, Uganda. BMC Infect Dis 2019; 19: 486. <https://doi.org/10.1186/s12879-019-4136-7> <PubMed>
112. Kohler P, Eshaghi A, Kim HC, et al. Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS One 2018; 13: e0193926. <https://doi.org/10.1371/journal.pone.0193926> <PubMed>
113. Douraghi M, Kenyon JJ, Aris P, Asadian M, Ghourchian S, Hamidian M. Accumulation of Antibiotic Resistance Genes in Carbapenem-Resistant Acinetobacter baumannii Isolates Belonging to Lineage 2, Global Clone 1, from Outbreaks in 2012–2013 at a Tehran Burns Hospital. mSphere 2020; 5: e00164-20. <https://doi.org/10.1128/mSphere.00164-20> <PubMed>
114. Ahmed MAEE, Yang Y, Yang Y, et al. Emergence of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Coharboring a blaNDM-1-Carrying Virulent Plasmid and a blaKPC-2-Carrying Plasmid in an Egyptian Hospital. mSphere 2021; 6: e00088-21. <https://doi.org/10.1128/mSphere.00088-21> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive