Acta Med. 2022, 65: 105-111

https://doi.org/10.14712/18059694.2022.26

The Role of FXR-Signaling Variability in the Development and Course of Non-Alcoholic Fatty Liver Disease in Children

Yuriy StepanovID, Natalia ZavhorodniaID, Inna KleninaID, Olena HrabovskaID, Viktoria YagmurID

SI “Institute Gastroenterology of the National Academy of Medical Sciences of Ukraine”, Dnipro, Ukraine

Received July 19, 2021
Accepted December 11, 2022

References

1. Stepanov YM, Abaturov OE, Zavhorodnia NY, Skirda ІY. Non-alcoholic fatty liver disease in children: current view on diagnostics and treatment (Part I). Gastroenterologia 2015; 2: 99–107.
2. Mantovani A, Zusi C. The dawn of a new era for nonalcoholic fatty liver disease? Hepatobiliary Surg Nutr 2019; 8(Suppl 6): 629–31. <https://doi.org/10.21037/hbsn.2019.09.15> <PubMed>
3. van der Sijde MR, Ng A, Fu J. Systems genetics: From GWAS to disease pathways. Biochim Biophys Acta 2014; 1842(Suppl 10): 1903–9. <https://doi.org/10.1016/j.bbadis.2014.04.025>
4. Goldner D, Lavine JE. Nonalcoholic Fatty Liver Disease in Children: Unique Considerations and Challenges. Gastroenterology 2020; 158(Suppl 7): 1967–83. <https://doi.org/10.1053/j.gastro.2020.01.048>
5. Ismaiel A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. Eur J Clin Invest 2020; 50: e13331. <https://doi.org/10.1111/eci.13331>
6. Zusi C, Mantovani A, Olivieri F, et al. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. Dig Liver Dis 2019; 51: 1586–92. <https://doi.org/10.1016/j.dld.2019.05.029>
7. Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. Hepatology 2020; 72(Suppl 1): 330–46. <https://doi.org/10.1002/hep.31229> <PubMed>
8. Chen, X, Wang L, Shan Q, et al. A novel heterozygous NR1H4 termination codon mutation in idiopathic infantile cholestasis. World J Pediatr 2012; 8(Suppl 1): 67–71. <https://doi.org/10.1007/s12519-011-0299-z>
9. Gomez-Ospina N, Potter C, Xiao R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun 2016; 7: 10713. <https://doi.org/10.1038/ncomms10713> <PubMed>
10. Pavlovic N, Stanimirov B, Mikov M. Bile Acids as Novel Pharmacological Agents: The Interplay Between Gene Polymorphisms, Epigenetic Factors and Drug Response. Curr Pharm Des 2017; 23(Suppl 1): 187–215.
11. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10(Suppl 1): 21–56. <https://doi.org/10.1002/cphy.c190007> <PubMed>
12. Koutsounas I, Theocharis S, Delladetsima I, Patsouris E, Giaginis C. Farnesoid X receptor in human metabolism and disease: the interplay between gene polymorphisms, clinical phenotypes and disease susceptibility. Expert Opin Drug Metab Toxicol 2015; 11(Suppl 4): 523–32. <https://doi.org/10.1517/17425255.2014.999664>
13. Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36(Suppl 6): 1657–98. <https://doi.org/10.1016/j.biotechadv.2018.03.003>
14. Veselsky SP, Lyashchenko PS, Lukyanenko IA. Method for determination of bile acids in biological fluids. Laboratory Work 1979; 3: 176–81.
15. National Center for Biotechnology Information U.S. National Library of Medicine. ALFA: Allele Frequency Aggregator. (Accessed March 10, 2020, at www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/.)
16. Nijmeijer RM, Gadaleta RM, van Mil SW, et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS One 2011; 6(Suppl 8): e23745. <https://doi.org/10.1371/journal.pone.0023745> <PubMed>
17. Lutz P, Berger C, Langhans B, et al. A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis. Dig Liver Dis 2014; 46: 1047–50. <https://doi.org/10.1016/j.dld.2014.07.008>
18. van den Berg SW, Dollé ME, Imholz S, et al. Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study. Int J Obes (Lond) 2009; 33: 1143–52. <https://doi.org/10.1038/ijo.2009.152>
19. Hu M, Lui SS, Tam LS, Li EK, Tomlinson B. The farnesoid X receptor -1G>T polymorphism influences the lipid response to rosuvastatin. J Lipid Res 2012; 53: 1384–9. <https://doi.org/10.1194/jlr.M026054> <PubMed>
20. Liu M, Wu XJ, Zhao GL, et al. Effects of Polymorphisms in NR1H4, NR1I2, SLCO1B1, and ABCG2 on the Pharmacokinetics of Rosuvastatin in Healthy Chinese Volunteers. J Cardiovasc Pharmacol 2016; 68: 383–90. <https://doi.org/10.1097/FJC.0000000000000426>
21. Heni M, Wagner R, Ketterer C, et al. Genetic variation in NR1H4 encoding the bile acid receptor FXR determines fasting glucose and free fatty acid levels in humans. J Clin Endocrinol Metab 2013; 98: E1224–9. <https://doi.org/10.1210/jc.2013-1177>
22. Attinkara R, Mwinyi J, Truninger K, et al. Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease. BMC Res Notes 2012; 5: 461. <https://doi.org/10.1186/1756-0500-5-461> <PubMed>
23. Kovacs P, Kress R, Rocha J, et al. Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. J Hepatol 2008; 48: 116–24. <https://doi.org/10.1016/j.jhep.2007.07.027>
24. Alashkar F, Weber SN, Vance C, et al. Persisting hyperbilirubinemia in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with eculizumab: The role of hepatocanalicular transporter variants. Eur J Haematol 2017; 99: 350–6. <https://doi.org/10.1111/ejh.12927>
25. Dixon PH, Wadsworth CA, Chambers J, et al. A comprehensive analysis of common genetic variation around six candidate loci for intrahepatic cholestasis of pregnancy. Am J Gastroenterol 2014; 109(Suppl 1): 76–84. <https://doi.org/10.1038/ajg.2013.406> <PubMed>
26. Van Mil SW, Milona A, Dixon PH, et al. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 2007; 133(Suppl 2): 507–16. <https://doi.org/10.1053/j.gastro.2007.05.015>
27. Patrushev LI, Kovalenko F. Functions of non-coding sequences of the mammalian genome. Adv Biol Chem 2014; 54: 39–102.
28. Ramírez-Bello J, Jiménez-Morales M. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases. Gac Med Mex 2017; 153(Suppl 2): 238–50.
29. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318(Suppl 3): G554–G573. <https://doi.org/10.1152/ajpgi.00223.2019> <PubMed>
30. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102(Suppl 6): 731–44. <https://doi.org/10.1016/S0092-8674(00)00062-3>
31. Alvarez-Sola G, Uriarte I, Latasa MU, et al. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 2017; 66: 1818–28. <https://doi.org/10.1136/gutjnl-2016-312975>
32. Mouzaki M, Wang AY, Bandsma R, et al. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS One 2016; 11(Suppl 5): e0151829. <https://doi.org/10.1371/journal.pone.0151829> <PubMed>
33. Ferslew BC, Xie G, Johnston CK, et al. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig Dis Sci 2015; 60(Suppl 11): 3318–28. <https://doi.org/10.1007/s10620-015-3776-8> <PubMed>
34. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103(Suppl 10): 3920–5. <https://doi.org/10.1073/pnas.0509592103> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive