Acta Med. 2022, 65: 105-111
https://doi.org/10.14712/18059694.2022.26
The Role of FXR-Signaling Variability in the Development and Course of Non-Alcoholic Fatty Liver Disease in Children
References
1. Gastroenterologia 2015; 2: 99–107.
YM, Abaturov OE, Zavhorodnia NY, Skirda ІY. Non-alcoholic fatty liver disease in children: current view on diagnostics and treatment (Part I).
2. Hepatobiliary Surg Nutr 2019; 8(Suppl 6): 629–31.
< A, Zusi C. The dawn of a new era for nonalcoholic fatty liver disease? https://doi.org/10.21037/hbsn.2019.09.15>
<PubMed>
3. Biochim Biophys Acta 2014; 1842(Suppl 10): 1903–9.
< MR, Ng A, Fu J. Systems genetics: From GWAS to disease pathways. https://doi.org/10.1016/j.bbadis.2014.04.025>
4. Gastroenterology 2020; 158(Suppl 7): 1967–83.
< D, Lavine JE. Nonalcoholic Fatty Liver Disease in Children: Unique Considerations and Challenges. https://doi.org/10.1053/j.gastro.2020.01.048>
5. Eur J Clin Invest 2020; 50: e13331.
< A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. https://doi.org/10.1111/eci.13331>
6. Dig Liver Dis 2019; 51: 1586–92.
< C, Mantovani A, Olivieri F, et al. Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents. https://doi.org/10.1016/j.dld.2019.05.029>
7. Hepatology 2020; 72(Suppl 1): 330–46.
< S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. https://doi.org/10.1002/hep.31229>
<PubMed>
8. World J Pediatr 2012; 8(Suppl 1): 67–71.
< , X, Wang L, Shan Q, et al. A novel heterozygous NR1H4 termination codon mutation in idiopathic infantile cholestasis. https://doi.org/10.1007/s12519-011-0299-z>
9. Nat Commun 2016; 7: 10713.
< N, Potter C, Xiao R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. https://doi.org/10.1038/ncomms10713>
<PubMed>
10. Curr Pharm Des 2017; 23(Suppl 1): 187–215.
N, Stanimirov B, Mikov M. Bile Acids as Novel Pharmacological Agents: The Interplay Between Gene Polymorphisms, Epigenetic Factors and Drug Response.
11. Compr Physiol 2019; 10(Suppl 1): 21–56.
< AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. https://doi.org/10.1002/cphy.c190007>
<PubMed>
12. Expert Opin Drug Metab Toxicol 2015; 11(Suppl 4): 523–32.
< I, Theocharis S, Delladetsima I, Patsouris E, Giaginis C. Farnesoid X receptor in human metabolism and disease: the interplay between gene polymorphisms, clinical phenotypes and disease susceptibility. https://doi.org/10.1517/17425255.2014.999664>
13. Biotechnol Adv 2018; 36(Suppl 6): 1657–98.
< V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. https://doi.org/10.1016/j.biotechadv.2018.03.003>
14. Laboratory Work 1979; 3: 176–81.
SP, Lyashchenko PS, Lukyanenko IA. Method for determination of bile acids in biological fluids.
15. National Center for Biotechnology Information U.S. National Library of Medicine. ALFA: Allele Frequency Aggregator. (Accessed March 10, 2020, at www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/.)
16. PLoS One 2011; 6(Suppl 8): e23745.
< RM, Gadaleta RM, van Mil SW, et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. https://doi.org/10.1371/journal.pone.0023745>
<PubMed>
17. Dig Liver Dis 2014; 46: 1047–50.
< P, Berger C, Langhans B, et al. A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis. https://doi.org/10.1016/j.dld.2014.07.008>
18. Int J Obes (Lond) 2009; 33: 1143–52.
< SW, Dollé ME, Imholz S, et al. Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study. https://doi.org/10.1038/ijo.2009.152>
19. J Lipid Res 2012; 53: 1384–9.
< M, Lui SS, Tam LS, Li EK, Tomlinson B. The farnesoid X receptor -1G>T polymorphism influences the lipid response to rosuvastatin. https://doi.org/10.1194/jlr.M026054>
<PubMed>
20. J Cardiovasc Pharmacol 2016; 68: 383–90.
< M, Wu XJ, Zhao GL, et al. Effects of Polymorphisms in NR1H4, NR1I2, SLCO1B1, and ABCG2 on the Pharmacokinetics of Rosuvastatin in Healthy Chinese Volunteers. https://doi.org/10.1097/FJC.0000000000000426>
21. J Clin Endocrinol Metab 2013; 98: E1224–9.
< M, Wagner R, Ketterer C, et al. Genetic variation in NR1H4 encoding the bile acid receptor FXR determines fasting glucose and free fatty acid levels in humans. https://doi.org/10.1210/jc.2013-1177>
22. BMC Res Notes 2012; 5: 461.
< R, Mwinyi J, Truninger K, et al. Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease. https://doi.org/10.1186/1756-0500-5-461>
<PubMed>
23. J Hepatol 2008; 48: 116–24.
< P, Kress R, Rocha J, et al. Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. https://doi.org/10.1016/j.jhep.2007.07.027>
24. Eur J Haematol 2017; 99: 350–6.
< F, Weber SN, Vance C, et al. Persisting hyperbilirubinemia in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with eculizumab: The role of hepatocanalicular transporter variants. https://doi.org/10.1111/ejh.12927>
25. Am J Gastroenterol 2014; 109(Suppl 1): 76–84.
< PH, Wadsworth CA, Chambers J, et al. A comprehensive analysis of common genetic variation around six candidate loci for intrahepatic cholestasis of pregnancy. https://doi.org/10.1038/ajg.2013.406>
<PubMed>
26. Gastroenterology 2007; 133(Suppl 2): 507–16.
< SW, Milona A, Dixon PH, et al. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. https://doi.org/10.1053/j.gastro.2007.05.015>
27. Adv Biol Chem 2014; 54: 39–102.
LI, Kovalenko F. Functions of non-coding sequences of the mammalian genome.
28. Gac Med Mex 2017; 153(Suppl 2): 238–50.
J, Jiménez-Morales M. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases.
29. Am J Physiol Gastrointest Liver Physiol 2020; 318(Suppl 3): G554–G573.
< JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. https://doi.org/10.1152/ajpgi.00223.2019>
<PubMed>
30. Cell 2000; 102(Suppl 6): 731–44.
< CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. https://doi.org/10.1016/S0092-8674(00)00062-3>
31. Gut 2017; 66: 1818–28.
< G, Uriarte I, Latasa MU, et al. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. https://doi.org/10.1136/gutjnl-2016-312975>
32. PLoS One 2016; 11(Suppl 5): e0151829.
< M, Wang AY, Bandsma R, et al. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. https://doi.org/10.1371/journal.pone.0151829>
<PubMed>
33. Dig Dis Sci 2015; 60(Suppl 11): 3318–28.
< BC, Xie G, Johnston CK, et al. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. https://doi.org/10.1007/s10620-015-3776-8>
<PubMed>
34. Proc Natl Acad Sci U S A 2006; 103(Suppl 10): 3920–5.
< T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. https://doi.org/10.1073/pnas.0509592103>
<PubMed>