Acta Med. 2022, 65: 89-98

https://doi.org/10.14712/18059694.2022.24

The Choroid after Half-Dose Photodynamic Therapy in Chronic Central Serous Chorioretinopathy

Evita Evangelia Christoua, Andreas Katsanosa, Ilias Georgalasb, Vassilios Kozobolisc, Christos Kalogeropoulosa, Maria Stefaniotoua

aDepartment of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
bFirst Department of Ophthalmology, General Hospital of Athens G. Gennimatas, Medical School, National and Kapodistrian University of Athens, Greece
cDepartment of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Patras, Patras, Greece

Received May 11, 2022
Accepted November 14, 2022

References

1. Prünte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 1996 Jan; 121(1): 26–34. <https://doi.org/10.1016/S0002-9394(14)70531-8>
2. Katsanos A, Gorgoli K, Konidaris V, Empeslidis T. An overview of risk factors, diagnosis and treatment of central serous chorioretinopathy. In: Patrick Evans (Ed). Central serous chorioretinopathy (CSCR): risk factors, diagnosis and management. Chapter 1, p: 1–32. Nova Science Publishers Inc, NY, USA, 2017.
3. Piccolino FC, de la Longrais RR, Ravera G, et al. The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 2005 Jan; 139(1): 87–99. <https://doi.org/10.1016/j.ajo.2004.08.037>
4. Spaide RF, Campeas L, Haas A, et al. Central serous chorioretinopathy in younger and older adults. Ophthalmology 1996 Dec; 103(12): 2070–9; discussion 2079–80. <https://doi.org/10.1016/S0161-6420(96)30386-2>
5. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye (Lond) 2019 Jan; 33(1): 14–33. <https://doi.org/10.1038/s41433-018-0158-4> <PubMed>
6. Teussink MM, Breukink MB, van Grinsven MJ, et al. OCT Angiography Compared to Fluorescein and Indocyanine Green Angiography in Chronic Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci 2015 Aug; 56(9): 5229–37. <https://doi.org/10.1167/iovs.15-17140>
7. Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 2014 Jun 3; 55(6): 38939. Erratum in: Invest Ophthalmol Vis Sci 2014 Aug; 55(8): 4811–2.
8. Chan WM, Lam DS, Lai TY, Tam BS, Liu DT, Chan CK. Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol 2003 Dec; 87(12): 1453–8. <https://doi.org/10.1136/bjo.87.12.1453> <PubMed>
9. Flores-Moreno I, Arcos-Villegas G, Sastre M, Ruiz-Medrano J, Arias-Barquet L, Duker JS, Ruiz-Moreno JM. Changes in choriocapillaris, sattler, and haller layer thicknesses in central serous chorioretinopathy after half-fluence photodynamic therapy. Retina 2020 Dec; 40(12): 2373–8. <https://doi.org/10.1097/IAE.0000000000002764>
10. Hua R, Liu L, Li C, Chen L. Evaluation of the effects of photodynamic therapy on chronic central serous chorioretinopathy based on the mean choroidal thickness and the lumen area of abnormal choroidal vessels. Photodiagnosis Photodyn Ther 2014 Dec; 11(4): 519–25. <https://doi.org/10.1016/j.pdpdt.2014.07.005>
11. Razavi S, Souied EH, Cavallero E, Weber M, Querques G. Assessment of choroidal topographic changes by swept source optical coherence tomography after photodynamic therapy for central serous chorioretinopathy. Am J Ophthalmol 2014 Apr; 157(4): 852-60. <https://doi.org/10.1016/j.ajo.2013.12.029>
12. Chung YR, Kim JW, Kim SW, Lee K. Choroidal thickness in patients with central serous chorioretinopathy: Assessment of Haller and Sattler Layers. Retina 2016 Sep; 36(9): 1652–7. <https://doi.org/10.1097/IAE.0000000000000998>
13. Izumi T, Koizumi H, Maruko I, et al. Structural analyses of choroid after half-dose verteporfin photodynamic therapy for central serous chorioretinopathy. Br J Ophthalmol 2017 Apr; 101(4): 433–7. <https://doi.org/10.1136/bjophthalmol-2016-308921>
14. Nicolò M, Rosa R, Musetti D, Musolino M, Saccheggiani M, Traverso CE. Choroidal Vascular Flow Area in Central Serous Chorioretinopathy Using Swept-Source Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2017 Apr 1; 58(4): 2002–10. <https://doi.org/10.1167/iovs.17-21417>
15. Chan SY, Wang Q, Wei WB, Jonas JB. Optical coherence tomographic angiography in central serous chorioretinopathy. Retina 2016 Nov; 36(11): 2051–8. <https://doi.org/10.1097/IAE.0000000000001064>
16. Taban M, Boyer DS, Thomas EL, Taban M. Chronic central serous chorioretinopathy: photodynamic therapy. Am J Ophthalmol 2004 Jun; 137(6): 1073–80. <https://doi.org/10.1016/j.ajo.2004.01.043>
17. Silva RM, Ruiz-Moreno JM, Gomez-Ulla F, et al. Photodynamic therapy for chronic central serous chorioretinopathy: a 4-year follow-up study. Retina 2013 Feb; 33(2): 309–15. <https://doi.org/10.1097/IAE.0b013e3182670fbe>
18. Yannuzzi LA, Slakter JS, Gross NE, et al. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. 2003. Retina 2012 Feb; 32 Suppl 1: 288–98. <https://doi.org/10.1097/IAE.0b013e31823f99a9>
19. Tsakonas GD, Kotsolis AI, Koutsandrea C, Georgalas I, Papaconstantinou D, Ladas ID. Multiple spots of photodynamic therapy for the treatment of severe chronic central serous chorioretinopathy. Clin Ophthalmol 2012; 6: 1639–44.
20. Reibaldi M, Cardascia N, Longo A, et al. Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. Am J Ophthalmol 2010 Feb; 149(2): 307–315.e2. <https://doi.org/10.1016/j.ajo.2009.08.026>
21. Ma DJ, Park UC, Kim ET, Yu HG. Choroidal vascularity changes in idiopathic central serous chorioretinopathy after half-fluence photodynamic therapy. PLoS One 2018 Aug 27; 13(8): e0202930. <https://doi.org/10.1371/journal.pone.0202930> <PubMed>
22. Branchini LA, Adhi M, Regatieri CV, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 2013 Sep; 120(9): 1901–8. <https://doi.org/10.1016/j.ophtha.2013.01.066> <PubMed>
23. Iovino C, Pellegrini M, Bernabei F, et al. Choroidal Vascularity Index: An In-Depth Analysis of This Novel Optical Coherence Tomography Parameter. J Clin Med 2020 Feb 21; 9(2): 595. <https://doi.org/10.3390/jcm9020595> <PubMed>
24. Schlötzer-Schrehardt U, Viestenz A, Naumann GO, Laqua H, Michels S, Schmidt-Erfurth U. Dose-related structural effects of photodynamic therapy on choroidal and retinal structures of human eyes. Graefes Arch Clin Exp Ophthalmol 2002 Sep; 240(9): 748-57. <https://doi.org/10.1007/s00417-002-0517-4>
25. Husain D, Kramer M, Kenny AG, et al. Effects of photodynamic therapy using verteporfin on experimental choroidal neovascularization and normal retina and choroid up to 7 weeks after treatment. Invest Ophthalmol Vis Sci 1999 Sep; 40(10): 2322–31.
26. Schmidt-Erfurth U, Laqua H, Schlötzer-Schrehard U, Viestenz A, Naumann GO. Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 2002 Jun; 120(6): 835–44.
27. Maruko I, Iida T, Sugano Y, Furuta M, Sekiryu T. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy. Retina 2011 Oct; 31(9): 1921–7. <https://doi.org/10.1097/IAE.0b013e31822bf6b1>
28. Oh BL, Yu HG. Choroidal thickness after full-fluence and half-fluence photodynamic therapy in chronic central serous chorioretinopathy. Retina 2015 Aug; 35(8): 1555–60. <https://doi.org/10.1097/IAE.0000000000000511>
29. Kim YK, Ryoo NK, Woo SJ, Park KH. Choroidal Thickness Changes After Photodynamic Therapy and Recurrence of Chronic Central Serous Chorioretinopathy. Am J Ophthalmol 2015 Jul; 160(1): 72–84.e1. <https://doi.org/10.1016/j.ajo.2015.04.011>
30. Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: Preliminary results. Photodiagnosis Photodyn Ther 2018 Mar; 21: 375–8. <https://doi.org/10.1016/j.pdpdt.2018.01.015>
31. Demirel S, Özcan G, Yanık Ö, Batıoğlu F, Özmert E. Vascular and structural alterations of the choroid evaluated by optical coherence tomography angiography and optical coherence tomography after half-fluence photodynamic therapy in chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2019 May; 257(5): 905–12. <https://doi.org/10.1007/s00417-018-04226-6>
32. Chan SY, Pan CT, Wang Q, Shi XH, Jonas JB, Wei WB. Optical coherent tomographic angiographic pattern of the deep choroidal layer and choriocapillaris after photodynamic therapy for central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2019 Jul; 257(7): 1365–72. <https://doi.org/10.1007/s00417-019-04318-x>
33. Cennamo G, Montorio D, Comune C, et al. Study of vessel density by optical coherence tomography angiography in patients with central serous chorioretinopathy after low-fluence photodynamic therapy. Photodiagnosis Photodyn Ther 2020 Jun; 30: 101742. <https://doi.org/10.1016/j.pdpdt.2020.101742>
34. Alovisi C, Piccolino FC, Nassisi M, Eandi CM. Choroidal Structure after Half-Dose Photodynamic Therapy in Chronic Central Serous Chorioretinopathy. J Clin Med 2020 Aug 24; 9(9): 2734. <https://doi.org/10.3390/jcm9092734> <PubMed>
35. Costanzo E, Cohen SY, Miere A, et al. Optical Coherence Tomography Angiography in Central Serous Chorioretinopathy. J Ophthalmol 2015; 2015: 134783. <https://doi.org/10.1155/2015/134783> <PubMed>
36. Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015 Nov; 35(11): 2196–203. <https://doi.org/10.1097/IAE.0000000000000635>
37. Regatieri CV, Novais EA, Branchini L, et al. Choroidal thickness in older patients with central serous chorioretinopathy. Int J Retina Vitreous 2016 Sep 15; 2: 22. <https://doi.org/10.1186/s40942-016-0046-7> <PubMed>
38. Agrawal R, Seen S, Vaishnavi S, et al. Choroidal Vascularity Index Using Swept-Source and Spectral-Domain Optical Coherence Tomography: A Comparative Study. Ophthalmic Surg Lasers Imaging Retina 2019 Feb 1; 50(2): e26–e32. <https://doi.org/10.3928/23258160-20190129-15>
39. Christou EE, Stavrakas P, Kozobolis V, Katsanos A, Georgalas I, Stefaniotou M. Evaluation of the choriocapillaris after photodynamic therapy for chronic central serous chorioretinopathy. A review of optical coherence tomography angiography (OCT-A) studies. Graefes Arch Clin Exp Ophthalmol 2022 Jun; 260(6): 1823–35. <https://doi.org/10.1007/s00417-022-05563-3>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive