Acta Med. 2022, 65: 75-82

https://doi.org/10.14712/18059694.2022.22

Serum Citrulline and Ornithine: Potential Markers of Coeliac Disease Activity

Ladislav Doudaa, Radomír Hyšplerb, Martin Mžikb, Doris Vokurkovác, Marcela Drahošovác, Vít Řeháčekd, Eva Čermákováe, Tomáš Doudaa, Jiří Cyranya, Tomáš Fejfara, Václav Jirkovskýa, Marcela Kopáčováa, Blanka Kupkováa, Tomáš Vašátkoa, Ilja TachecíaID, Jan Burešf

a2nd Department of Internal Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
bInstitute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
cDepartment of Clinical Immunology and Allergology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
dTransfusion Department, University Hospital Hradec Králové, Czech Republic
eDepartment of Medical Biophysic, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
fBiomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic

Received October 14, 2022
Accepted December 15, 2022

References

1. Al-Toma A, Volta U, Auricchio R, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J 2019; 7(5): 583–613. <https://doi.org/10.1177/2050640619844125> <PubMed>
2. Bai J, Ciacci C, Corazza G, et al. World Gastroenterology Organisation Global Guidelines: Celiac disease. Milwaukee: World Gastroenterology Organisation, 2016, http://wwwworldgastroenterologyorg /guidelines/global- guidelines/celiac-disease/celiac-disease-english (accessed 2017-08-08).
3. Helms S. Celiac disease and gluten-associated diseases. Altern Med Rev 2005; 10(3): 172–92.
4. Bureš J. Coeliac disease and other gluten-associated diseases. 2017. (in Czech)
5. Bulletin of the Ministry of Health of the Czech Republic; 28.2.2011; part 3. Targeted screening for coeliac disease (methodical guideline). Prague: Ministry of Health of the Czech Republic, 2011. (in Czech)
6. Frič P. Coeliac sprue (p. 219–38). In: Bureš J et al. Gastroenterology 2006. Collectio novissima. Prague: Triton, 2006. (in Czech)
7. Frič P, Zavoral M, Dvořáková T. Diseases caused by gluten. Vnitř Lék 2013; 59: 376–82. (in Czech)
8. Lebwohl B, Green PHR. New Developments in Celiac Disease. Gastroenterol Clin North Am 2019; 48(1): xv–xvi. <https://doi.org/10.1016/j.gtc.2018.10.001>
9. Bureš J. Endoscopic features of coeliac disease. Folia Gastroenterol Hepatol, 2005.
10. Marsh MN. Gluten, major histocompatibility complex, and small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 1992; 102: 330–5. <https://doi.org/10.1016/0016-5085(92)91819-P>
11. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of celiac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 1999; 11: 1185–94. <https://doi.org/10.1097/00042737-199910000-00019>
12. Pironi L, Konrad D, Brandt C, et al. Clinical classification of adult patients with chronic intestinal failure due to benign disease: An international multicenter cross-sectional survey. Clin Nutr 2018; 37(2): 728–38. <https://doi.org/10.1016/j.clnu.2017.04.013>
13. Ng KYB, Mehta R, Mohamed S, Mohamed Z, Arnold J. Severe Refractory Coeliac Disease with Response Only to Parenteral Nutrition. Case Rep Gastroenterol 2014; 8(3): 297–303. <https://doi.org/10.1159/000368394> <PubMed>
14. O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol 2006; 4(1): 6–10. <https://doi.org/10.1016/j.cgh.2005.10.002>
15. Pironi L, Arends J, Bozzetti F, et al. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr 2016; 35(2): 247–307. <https://doi.org/10.1016/j.clnu.2016.01.020>
16. Bharadwaj S, Tandon P, Meka K, et al. Intestinal Failure: Adaptation, Rehabilitation, and Transplantation. J Clin Gastroenterol 2016; 50(5): 366–72. <https://doi.org/10.1097/MCG.0000000000000512>
17. Kappus M, Diamond S, Hurt RT, Martindale R. Intestinal Failure: New Definition and Clinical Implications. Curr Gastroenterol Rep 2016; 18(9): 48. <https://doi.org/10.1007/s11894-016-0525-x>
18. Klek S, Forbes A, Gabe S, et al. Management of acute intestinal failure: A position paper from the European Society for Clinical Nutrition and Metabolism (ESPEN) Special Interest Group. Clin Nutr 2016; 35(6): 1209–18. <https://doi.org/10.1016/j.clnu.2016.04.009>
19. Penny HA, Schiepatti A, Sanders DS. Chapter 5 – Nonresponsive and complicated coeliac disease. In: Schieptti A, Sanders D, editors. Coeliac Disease and Gluten-Related Disorders: Academic Press; 2022, p. 87–100.
20. Ludvigsson JF, Leffler DA, Bai JC, et al. The Oslo definitions for coeliac disease and related terms. Gut 2013; 62(1): 43–52. <https://doi.org/10.1136/gutjnl-2011-301346> <PubMed>
21. Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000; 119(6): 1496–505. <https://doi.org/10.1053/gast.2000.20227>
22. Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003; 124(5): 1210–9. <https://doi.org/10.1016/S0016-5085(03)00170-7>
23. Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc Drug Rev 2006 Fall-Winter; 24(3–4): 275–90. <https://doi.org/10.1111/j.1527-3466.2006.00275.x>
24. Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 2001 Nov 23; 508(3): 438–42. <https://doi.org/10.1016/S0014-5793(01)03123-4>
25. Norris KA, Schrimpf JE, Flynn JL, Morris SM Jr. Enhance- ment of macrophage microbicidal activity: supplemental arginine and citrulline augment nitric oxide production in murine perito- neal macrophages and promote intracellular killing of Trypano- soma cruzi. Infect Immun 1995; 63: 2793–6. <https://doi.org/10.1128/iai.63.7.2793-2796.1995> <PubMed>
26. Osowska S. Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut 2004; 53(12): 1781–6. <https://doi.org/10.1136/gut.2004.042317> <PubMed>
27. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, Moinard C. Citrulline modulates muscle protein metab- olism in old malnourished rats. Am J Physiol Endocrinol Metab 2006; 291: ­E582–E586. <https://doi.org/10.1152/ajpendo.00398.2005>
28. Wiśniewski J, Fleszar MG, Piechowicz J, et al. A novel mass spectrometry-based method for simultaneous determination of asymmetric and symmetric dimethylarginine, l-arginine and l-citrulline optimized for LC-MS-TOF and LC-MS/MS. Biomed Chromatogr 2017; 31(11).
29. European Medicines Agency: Guideline on Bioanalytical ­Method Validation, https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf, 2021.
30. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama 2013; 310(20): 2191–4.
31. Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove: Brooks/Cole Pub. Co., 1996.
32. Douda L, Vokurková D, Douda T, et al. Memory B lymphocytes in peripheral blood in coeliac disease: a pilot study. Gastroenterologie a hepatologie 2019; 73(4): 296–302. <https://doi.org/10.14735/amgh2019296>
33. Salmi TT, Collin P, Korponay-Szabó IR, et al. Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut 2006; 55(12): 1746–53. <https://doi.org/10.1136/gut.2005.071514> <PubMed>
34. Lebwohl B, Michaëlsson K, Green PHR, Ludvigsson JF. Persistent Mucosal Damage and Risk of Fracture in Celiac Disease. J Clin Endocrinol Metab 2014; 99(2): 609–16. <https://doi.org/10.1210/jc.2013-3164> <PubMed>
35. Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981; 241(6): E473–80.
36. Hoffenberg EJ. Another measurement of the elusive entity called “intestinal function”. J Pediatr Gastroenterol Nutr 2003; 37(3): 325.
37. Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care 2007; 10(5): 620–6. <https://doi.org/10.1097/MCO.0b013e32829fb38d>
38. Papadia C, Sherwood RA, Kalantzis C, et al. Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol 2007; 102(7): 1474–82. <https://doi.org/10.1111/j.1572-0241.2007.01239.x>
39. Miceli E, Poggi N, Missanelli A, Bianchi P, Moratti R, Corazza GR. Is serum citrulline measurement clinically useful in coeliac disease? Intern Emerg Med 2008; 3(3): 233-6. <https://doi.org/10.1007/s11739-008-0155-x>
40. Oliverius M, Kudla M, Baláz P, Valsamis A. [Plasma citrulline concentration – a reliable noninvasive marker of functional enterocyte mass]. Cas Lek Cesk 2010; 149(4): 160–2.
41. Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United European Gastroenterol J 2018; 6(2): 181–91. <https://doi.org/10.1177/2050640617737632> <PubMed>
42. Breuillard C, Cynober L, Moinard C. Citrulline and nitrogen homeostasis: an overview. Amino Acids 2015; 47(4): 685–91. <https://doi.org/10.1007/s00726-015-1932-2>
43. Couchet M, Pestour S, Breuillard C, et al. Regulation of citrulline synthesis in human enterocytes: Role of hypoxia and inflammation. Biofactors 2022; 48(1): 181–9. <https://doi.org/10.1002/biof.1810>
44. Blachier F, Darcy-Vrillon B, Sener A, Duée PH, Malaisse WJ. Arginine metabolism in rat enterocytes. Biochim Biophys Acta 1991; 1092: 304–10. <https://doi.org/10.1016/S0167-4889(97)90005-7>
45. Bahri S CE, Aussel C. Caractérisation in vitro du transport instestinal de la citrulline. Nut Clin Metab 2006: 111.
46. Cynober L. Pharmacokinetics of arginine and related amino acids. J Nutr 2007; 137(6 Suppl 2): 1646s–9s. <https://doi.org/10.1093/jn/137.6.1646S>
47. Rabier D, Kamoun P. Metabolism of citrulline in man. Amino Acids 1995; 9(4): 299–316. <https://doi.org/10.1007/BF00807268>
48. Curis E, Nicolis I, Moinard C, et al. Almost all about citrulline in mammals. Amino Acids 2005; 29(3): 177–205. <https://doi.org/10.1007/s00726-005-0235-4>
49. Rogers G, Winter B, McLaughlan C, Powell B, Nesci T. Peptidy-larginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues. J Invest Dermatol 1997; 108: 700–7. <https://doi.org/10.1111/1523-1747.ep12292083>
50. Ishida-Yamamoto A, Senshu T, Takahashi H, Akiyama K, Nomura K, Iizuka H Decreased deiminated keratin K1 in psoriatic hyper-proliferative epidermis. J Invest Dermatol 2000; 114: 701–5. <https://doi.org/10.1046/j.1523-1747.2000.00936.x>
51. Moscarello MA, Pritzker L, Mastronardi FG, Wood DD Peptidy-larginine deiminase: a candidate factor in demyelinating disease. J Neurochem 2002; 81: 335–43. <https://doi.org/10.1046/j.1471-4159.2002.00834.x>
52. Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW. Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 2004; 473: 128–36. <https://doi.org/10.1002/cne.20102>
53. Asaga H, Yamada M, Senshu T. Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macro-phages. Biochem Res Commun 1998; 243: 641–6. <https://doi.org/10.1006/bbrc.1998.8148>
54. Girbal-Neuhauser E, Durieux JJ, Arnaud M, et al. The epitopes targeted by the rheumatoid arthritis- associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (Pro)filaggrin by deimination of arginine residues. J Immunol 1999; 162: 585–94. <https://doi.org/10.4049/jimmunol.162.1.585>
55. Sivashanmugam M, Jaidev J, Umashankar V, Sulochana KN. Ornithine and its role in metabolic diseases: An appraisal. Biomed Pharmacother 2017; 86: 185–94. <https://doi.org/10.1016/j.biopha.2016.12.024>
56. Hozyasz KK, Szaflarska-Popławska A, Ołtarzewski M, et al. [Whole blood citrulline levels in patients with coeliac disease]. Pol Merkur Lekarski 2006; 20(116): 173–5.
57. Mandel H, Levy N, Izkovitch S, Korman SH. Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). J Inherit Metab Dis 2005; 28(4): 467–72. <https://doi.org/10.1007/s10545-005-0467-1>
58. Wang T, Steel G, Milam AH, Valle D. Correction of ornithine accumulation prevents retinal degeneration in a mouse model of gyrate atrophy of the choroid and retina. Proc Natl Acad Sci U S A 2000; 97(3): 1224–9. <https://doi.org/10.1073/pnas.97.3.1224> <PubMed>
59. Barilli A, Rotoli BM, Visigalli R, Dall’Asta V. Gliadin activates arginase pathway in RAW264.7 cells and in human monocytes. Biochim Biophys Acta 2014; 1842(9): 1364–71. <https://doi.org/10.1016/j.bbadis.2014.04.021>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive