Acta Med. 2022, 65: 1-7

https://doi.org/10.14712/18059694.2022.9

The Development and Neurophysiological Assessment of Newborn Auditory Cognition: A Review of Findings and Their Application

Josef Urbaneca,b, Jan Kremláčeka,c, Kateřina Chládkovád,e, Sylva Skálováf

aDepartment of Pathological Physiology, Medical Faculty in Hradec Králové, Charles University, Czech Republic
bPaediatrics Department, Havlíčkův Brod Hospital, Czech Republic
cDepartment of Medical Biophysics, Medical Faculty in Hradec Králové, Charles University, Czech Republic
dInstitute of Czech Language and Theory of Communication, Faculty of Arts, Charles University, Prague, Czech Republic
eInstitute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
fPaediatrics Department of University Hospital in Hradec Králové, Charles University, Czech Republic

Received February 9, 2021
Accepted January 14, 2022

References

1. Graven S, Browne J. Auditory Development in the Fetus and Infant. NbInfant Nurs Rev 2008; 8(4): 187-93. <https://doi.org/10.1053/j.nainr.2008.10.010>
2. Sousa A, Didoné D, Sleifer P. Longitudinal Comparison of Auditory Steady-State Evoked Potentials in Preterm and Term Infants: The Maturation Process. Int Arch Otorhinolaryngol 2017; 21(3): 200-5.
3. Thiede A, Virtala P, Ala-Kurikka I, et al. An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Clin Neurophysiol 2019; 130(5): 634-46. <https://doi.org/10.1016/j.clinph.2019.01.019>
4. Melo de A, Biaggio E, Rechia I, et al. Cortical auditory evoked potentials in full-term and preterm neonates. Codas 2016; 28(5): 491-6. <https://doi.org/10.1590/2317-1782/20162015291>
5. Martins K, Gil D. Cortical Auditory Evoked Potentials with Simple (Tone Burst) and Complex (Speech) Stimuli in Children with Cochlear Implant. Int Arc Otorhinolaryngol 2017; 21(4): 351-7.
6. Silva L, Couto M, Tsuji R, et al. Auditory pathways' maturation after cochlear implant via cortical auditory evoked potentials. Braz J Otorhinolaryngol 2014; 80(2): 131-7. <https://doi.org/10.5935/1808-8694.20140028> <PubMed>
7. Mehta K, Watkin P, BAldwin M, et al. Role of Cortical Auditory Evoked Potentials in Reducing the Age at Hearing Aid Fitting in Children With Hearing Loss Identified by Newborn Hearing Screening. Trends in Hearing 2017; 21.
8. Frizzo, A. Auditory evoked potential: a proposal for further evaluation in children with learning disabilities. Front Psychol 2015; 6: 788. <https://doi.org/10.3389/fpsyg.2015.00788> <PubMed>
9. Duncan C, Barry R, Connolly J, et al. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 2009; 120(11): 1883-908. <https://doi.org/10.1016/j.clinph.2009.07.045>
10. Vacek Z. Organogeneze. Embryologie: učebnice pro studenty lékařství a oborů všeobecná sestra a porodní asistentka. Praha: Grada 2006: 99-101, 235-8.
11. Carlson, M. Nervous system. In: Human embryology and developmental biology, 5th ed. Philadelphia, PA: Elsevier/Saunders 2014: 216-45.
12. Joos K, Gilles A, Van de Heyning P, et al. From sensation to percept: The neural signature of auditory event-related potentials. Neurosci Biobehav R 2014; 42: 148-56. <https://doi.org/10.1016/j.neubiorev.2014.02.009>
13. Druga R, Grim M, Dubový P. Přehled drah CNS. Anatomie CNS. Praha: Galén 2011: 208-10.
14. Lahav A, Skoe E. An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front Neurosci 2014; 8: 381. <https://doi.org/10.3389/fnins.2014.00381> <PubMed>
15. Wodicka G, M. Lam A, Bhargava V, et al. Acoustic impedance of the maternal abdomen. J Acoust Soc Am 1993; 94(1): 13-18. <https://doi.org/10.1121/1.408220>
16. Granier-Deferre C, Ribeiro A, Jacquet AY, et al. Near-term fetuses process temporal features of speech. Dev Sci 2011; 14(2): 336-52. <https://doi.org/10.1111/j.1467-7687.2010.00978.x>
17. Fellman V, Huotilainen M. Cortical auditory event-related potentials in newborn infants. Semin Fetal Neonatal Med 2006; 11(6): 452-8. <https://doi.org/10.1016/j.siny.2006.07.004>
18. Naatanen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24(4): 375-425. <https://doi.org/10.1111/j.1469-8986.1987.tb00311.x>
19. Oliveira L, Didoné D, Durante A. Automated cortical auditory evoked potentials threshold estimation in neonates. Braz J Otorhinolaryngol 2019; 85(2): 206-12. <https://doi.org/10.1016/j.bjorl.2018.01.001> <PubMed>
20. Portonova G, Martynova O, Ivanitsky G. Age differences of event-related potentials in the perception of successive and spatial components of auditory information. Hum Physiol 2014; 40(1): 20-8. <https://doi.org/10.1134/S0362119714010125>
21. Pena M, Werker J, Dehaene-Lambertz G. Earlier Speech Exposure Does Not Accelerate Speech Acquisition. J Neurosci 2012; 32(33): 11159-63. <https://doi.org/10.1523/JNEUROSCI.6516-11.2012> <PubMed>
22. Cone B, Whitaker R. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens. Int J Pediatr Otorhinolaryngol 2013; 77(7): 1162-73 <https://doi.org/10.1016/j.ijporl.2013.04.030> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive