Acta Med. 2021, 64: 204-212
https://doi.org/10.14712/18059694.2022.3
Goeckerman Regimen Reduces Alarmin Levels and PASI Score in Paediatric Patients with Psoriasis
References
1. N Engl J Med 2005; 352(18): 1899–912.
< MP, Boehncke W-H. Psoriasis. https://doi.org/10.1056/NEJMra041320>
2. 601. Adv Exp Med Biol; 2007: 185–94.
< JJ, Tewary P, De La Rosa G, Yang D. Alarmins initiate host defense. In: Advances in Experimental Medicine and Biology. Vol https://doi.org/10.1007/978-0-387-72005-0_19>
3. J Immunol 2017; 198(4): 1395–402.
< P, Voronov E, Dinarello CA, Apte RN, Cohen I. Alarmins: Feel the Stress. https://doi.org/10.4049/jimmunol.1601342>
4. Annu Rev Immunol 2014; 32: 227–55.
< MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. https://doi.org/10.1146/annurev-immunol-032713-120225>
<PubMed>
5. Clin Ther 2016; 38(5): 1042–53.
< Y, Yang D, Oppenheim JJ. Alarmins and Antitumor Immunity. https://doi.org/10.1016/j.clinthera.2016.03.021>
<PubMed>
6. J Invest Dermatol 2009; 129(1): 79–88.
< LC, Fuentes-Duculan J, Eungdamrong NJ, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. https://doi.org/10.1038/jid.2008.194>
<PubMed>
7. Annu Rev Immunol 2011; 29: 139–62.
< U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. https://doi.org/10.1146/annurev-immunol-030409-101323>
<PubMed>
8. Biophys Rev 2017; 9(1): 17–40.
< D, McCauley MJ, Maher LJ, Williams MC. Single-molecule studies of high-mobility group B architectural DNA bending proteins. https://doi.org/10.1007/s12551-016-0236-4>
<PubMed>
9. Mol Med 2008; 14(7–8): 476–84.
< JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: Endogenous danger signaling. https://doi.org/10.2119/2008-00034.Klune>
<PubMed>
10. Immunol Rev 2007; 220(1): 35–46.
< ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. https://doi.org/10.1111/j.1600-065X.2007.00574.x>
11. Nat Rev Drug Discov 2014; 13(1): 21–38.
< R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. https://doi.org/10.1038/nrd4176>
12. Mol Med Rep 2020; 22(4): 2715–22.
L, Ma W, Yan J, Zhong H. Evaluation of the effects of IL-22 on the proliferation and differentiation of keratinocytes in vitro.
13. Curr Opin Immunol 2014; 31: 31–7.
< C, Girard JP. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. https://doi.org/10.1016/j.coi.2014.09.004>
14. Thorac Cardiovasc Surg 2010; 58(8): 443–9.
< P, Holubcova Z, Kolackova M, Krejsek J. Interleukin-33, a novel member of the IL-1/IL-18 cytokine family, in cardiology and cardiac surgery. https://doi.org/10.1055/s-0030-1250436>
15. EMBO J 2017; 36(11): 1605–22.
< J, Gupta S, Camacho S, et al. A new sub‐pathway of long‐patch base excision repair involving 5́ gap formation. https://doi.org/10.15252/embj.201694920>
<PubMed>
16. J Pharmacol Exp Ther 2015; 354(1): 24–31.
< TC, Petra AI, Taracanova A, Panagiotidou S, Conti P. Targeting IL-33 in autoimmunity and inflammation. https://doi.org/10.1124/jpet.114.222505>
17. Xu H, Turnquist HR, Hoffman R, Billiar TR. Role of the IL-33-ST2 axis in sepsis. Mil Med Res 2017; 4(3).
18. J Invest Dermatol 2020; 140(4): 827–837.e9.
< MH, Jin SP, Jang S, et al. IL-17A–Producing Innate Lymphoid Cells Promote Skin Inflammation by Inducing IL-33–Driven Type 2 Immune Responses. https://doi.org/10.1016/j.jid.2019.08.447>
19. Periodontol 2000 2015; 69(1): 142–59.
< C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. https://doi.org/10.1111/prd.12083>
<PubMed>
20. Emerg Microbes Infect 2013; 2(9): e60.
< W, Dong C. IL-17 cytokines in immunity and inflammation. https://doi.org/10.1038/emi.2013.58>
<PubMed>
21. Int J Biochem Cell Biol 1998; 30(5): 567–71.
< PH, Leygue ER, Murphy LC. Psoriasin (S100A7). https://doi.org/10.1016/S1357-2725(97)00066-6>
22. Granata M, Skarmoutsou E, Mazzarino MC, D’Amico F. S100A7 in psoriasis: Immunodetection and activation by CRISPR technology. In: Methods in Molecular Biology. Vol 1929. Humana Press Inc.; 2019: 729–38.
23. J Clin Invest 2018; 128(5): 1852–66.
< T, Stratis A, Wixler V, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. https://doi.org/10.1172/JCI89867>
<PubMed>
24. Front Immunol 2018; 9(JUN): 1298.
< S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. https://doi.org/10.3389/fimmu.2018.01298>
<PubMed>
25. Amino Acids 2009; 36(3): 381–9.
< J, Hoppmann S. Human S100A12: A novel key player in inflammation? https://doi.org/10.1007/s00726-008-0097-7>
26. Arthritis Rheum 2004; 50(12): 3762–71.
< D, Roth J. Proinflammatory S100 proteins in arthritis and autoimmune disease. https://doi.org/10.1002/art.20631>
27. J Eur Acad Dermatology Venereol 2016; 30(7): 1165–70.
< D, Wagenpfeil J, Holzinger D, et al. Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. https://doi.org/10.1111/jdv.13269>
28. J Dermatolog Treat 2013; 24(1): 34–7.
< ML, Heller MM, Lee ES, Koo J. Goeckerman therapy: A very effective, yet often forgotten treatment for severe generalized psoriasis. https://doi.org/10.3109/09546634.2012.658014>
29. Dermatol Ther (Heidelb) 2016; 6(3): 333–9.
< TH, Nakamura M, Farahnik B, et al. The Patient’s Guide to Psoriasis Treatment. Part 4: Goeckerman Therapy. https://doi.org/10.1007/s13555-016-0132-7>
<PubMed>
30. Pediatr Dermatol 2009; 26(1): 23–7.
< L, Andrys C, Krejsek J, et al. Genotoxic hazard and cellular stress in pediatric patients treated for psoriasis with the Goeckerman regimen. https://doi.org/10.1111/j.1525-1470.2008.00774.x>
31. J Dermatolog Treat 2018; 29(3): 230–2.
< S, Jeon C, Nakamura M, et al. Review of the mechanism of action of coal tar in psoriasis. https://doi.org/10.1080/09546634.2017.1369494>
32. Can Med Assoc J 1981; 124(8): 1018–20. https://pubmed.ncbi.nlm.nih .gov/7260786/. Accessed January 8, 2021.
JP, Cullen AE, Rouleau GA. Ambulatory Goeckerman treatment of psoriasis: Experience with 200 patients.
33. Pediatr Dermatol 2010; 27(5): 518–24.
< KR, Davis MDP, Witman PM, McEvoy MT, Farmer SA. Results of Goeckerman treatment for psoriasis in children: A 21-year retrospective review. https://doi.org/10.1111/j.1525-1470.2010.01124.x>
34. J Am Acad Dermatol 2014; 71(1): 195.
< JW. Goeckerman regimen for psoriatic patients refractory to biologic therapy. https://doi.org/10.1016/j.jaad.2013.10.069>
35. J Am Acad Dermatol 2013; 69(4): 648–9.
< S, Bhutani T, Koo J. Goeckerman regimen for management of psoriasis refractory to biologic therapy: The University of California San Francisco experience. https://doi.org/10.1016/j.jaad.2010.08.030>
36. Skin Pharmacol Physiol 2016; 29(1): 47–54.
< R, Duerr HP, Patzelt A, et al. Relationship between Histological and Clinical Course of Psoriasis: A Pilot Investigation by Reflectance Confocal Microscopy during Goeckerman Treatment. https://doi.org/10.1159/000443211>
37. J Invest Dermatol 2019; 139(7): 1564–73.e8.
< AK, Bivik Eding C, Rundquist I, Enerbäck C. IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis. https://doi.org/10.1016/j.jid.2019.01.014>
38. Int J Obes 2015; 39(4): 650–7.
< A, Murphy SK, Wang F, et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. https://doi.org/10.1038/ijo.2013.193>
<PubMed>
39. J Cutan Med Surg 2015; 19(6): 555–60.
< C, Lazaridou E, Sotiriou E, et al. IL-17A, IL-22, and IL-23 as markers of psoriasis activity: A cross-sectional, hospital-based study. https://doi.org/10.1177/1203475415584503>
40. Sci Rep 2021 Apr 29; 11(1): 9289.
< I, Narbutt J, Ceryn J, et al. AntiTNF-alpha therapy normalizes levels of lipids and adipokines in psoriatic patients in the real-life settings. https://doi.org/10.1038/s41598-021-88552-6>
<PubMed>
41. Dermatol Ther (Heidelb) 2021 Aug; 11(4): 1345–55.
< S, Cetkovska P, Arenberger P, Dolezal T, Arenbergerova M, Velackova B, Fialova J, Kojanova M; BIOREP study group. Risankizumab for the Treatment of Moderate-to-Severe Psoriasis: Real-Life Multicenter Experience from the Czech Republic. https://doi.org/10.1007/s13555-021-00556-2>
<PubMed>
42. Iran J Immunol 2016; 13(4): 317–23.
MR, Farshchian M, Hoseinzadeh A, Ghasemibasir HR, Solgi G. Serum levels of IL-10 and IL-22 cytokines in patients with psoriasis.
43. Eur J Dermatology 2013; 23(3): 350–5.
MA, Hegazy RA, Fawzy MM, Rashed LA, Rasheed H. Interleukin 17, interleukin 22 and FoxP3 expression in tissue and serum of non-segmental vitiligo: A case- controlled study on eighty-four patients.
44. Acta Derm Venereol 2020; 100(4): 1–2.
JC, Kim SM, Soh BW, Lee ES. Comparison of cytokine expression in paediatric and adult psoriatic skin.
45. Mediators Inflamm 2020; 2020: 7420823.
< A, Bartosińska J, Kowal M, Raczkiewicz D, Krasowska D, Chodorowska G. IL-17A in the Psoriatic Patients’ Serum and Plaque Scales as Potential Marker of the Diseases Severity and Obesity. https://doi.org/10.1155/2020/7420823>
<PubMed>
46. Pediatr Dermatol 2007; 24(6): 607–12.
< L, Fiala Z, Krejsek J, et al. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen. https://doi.org/10.1111/j.1525-1470.2007.00548.x>
47. Arthritis Res Ther 2013; 15(5): R136.
< H, Norris P, Goodall J, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. https://doi.org/10.1186/ar4317>
<PubMed>
48. Br J Dermatol 2017; 177(6): e321–e322.
< B, Honoré T V., Madelung A, et al. Interleukin (IL)-17A and IL-22-producing neutrophils in psoriatic skin. https://doi.org/10.1111/bjd.15533>
<PubMed>
49. J Invest Dermatol 2014; 134(9): 2305–7.
< NL, Umetsu DT. A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. https://doi.org/10.1038/jid.2014.216>
<PubMed>
50. J Immunol Res 2015; 2015: 1–16.
< MR, Chapeton-Montes JA, Posvandzic A, Pagé N, Gilbert C, Tessier PA. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux. https://doi.org/10.1155/2015/296149>
<PubMed>
51. Mediators Inflamm 2020; 2020: 8465083.
< P, Fiala Z, Andrys C, et al. Alarmins HMGB1, IL-33, S100A7, and S100A12 in Psoriasis Vulgaris. https://doi.org/10.1155/2020/8465083>
<PubMed>
52. J Dermatol Sci. 2015; 80(1): 38–44.
< F, Trovato C, Skarmoutsou E, et al. Effects of adalimumab, etanercept and ustekinumab on the expression of psoriasin (S100A7) in psoriatic skin. https://doi.org/10.1016/j.jdermsci.2015.07.009>
53. J Immunol 2020; 206(3): ji2000087.
J, Berrazouane S, Esparza N, et al. Deletion of S100a8 and S100a9 Enhances Skin Hyperplasia and Promotes the Th17 Response in Imiquimod-Induced Psoriasis.
54. Scand J Immunol 2016; 83(4): 255–66.
< R, Ashman M, Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. https://doi.org/10.1111/sji.12413>
55. Investig Ophthalmol Vis Sci 2015; 56(13): 7653–60.
< K, Heiligenhaus A, Holzinger D, et al. Elevated S100A8/A9 and S100A12 serum levels reflect intraocular inflammation in juvenile idiopathic arthritis- associated uveitis: Results from a pilot study. https://doi.org/10.1167/iovs.15-17066>
56. Immunity 2014; 40(2): 262–73.
< J, Jellbauer S, Wong CP, et al. The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria. https://doi.org/10.1016/j.immuni.2014.01.003>
<PubMed>
57. Zeng F, Chen H, Chen L, et al. An Autocrine Circuit of IL-33 in Keratinocytes is Involved in the Progression of Psoriasis. J Invest Dermatol. August 2020.
58. Clin Exp Dermatol 2016; 41(2): 183–9.
< A, Tada Y, Takahashi T, et al. Serum IL-33 levels are increased in patients with psoriasis. https://doi.org/10.1111/ced.12670>
59. J Pathol 2017; 241(3): 392–404.
< W, Guo S, Li B, et al. Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development. https://doi.org/10.1002/path.4848>
60. J Dermatol 2020; 47(9): 1033–6.
< T, Yamaguchi Y, Watanabe Y, Takamura N, Aihara M. Increased level of high mobility group box 1 in the serum and skin in patients with generalized pustular psoriasis. https://doi.org/10.1111/1346-8138.15467>
61. Egypt J Dermatology Venerol 2017; 37(2): 69.
M, Hassan E, Sobhy M, El Sayes MI. Role of high-mobility group box-1 as a marker of disease severity and diagnosis of metabolic syndrome in psoriatic patients.
62. J Eur Acad Dermatology Venereol 2016; 30(3): 435–41.
< C, Strohbuecker L, Lotfi R, et al. High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. https://doi.org/10.1111/jdv.13564>