Acta Med. 2021, 64: 158-164

https://doi.org/10.14712/18059694.2021.27

Obesity in Children with Leptin Receptor Gene Polymorphisms

Aleksandr Abaturov, Anna Nikulina*

Dnipro State Medical University (DSMU), Dnipro, Ukraine

Received November 11, 2020
Accepted September 13, 2021

References

1. Zhang Y, Chua S Jr. Leptin Function and Regulation. Compr Physiol 2017; 8(1): 351–69. <https://doi.org/10.1002/cphy.c160041>
2. Izquierdo AG, Crujeiras AB, Casanueva FF, et al. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019; 11(11): 2704. <https://doi.org/10.3390/nu11112704> <PubMed>
3. Kleinendorst L, Abawi O, van der Kamp HJ, et al. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur J Endocrinol 2020; 182(1): 47–56. <https://doi.org/10.1530/EJE-19-0678>
4. Thaker VV. Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev 2017; 28(2): 379–405.
5. Kleinendorst L, Abawi O, van der Kamp HJ, et al. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur J Endocrinol 2020; 182(1): 47–56. <https://doi.org/10.1530/EJE-19-0678>
6. Nordang GBN, Busk OL, Tveten K, et al. Next-generation sequencing of the monogenic obesity genes LEP, LEPR, MC4R, PCSK1 and POMC in a Norwegian cohort of patients with morbid obesity and normal weight controls. Molecular Genetics and Metabolism 2017; 1(121): 51–6. <https://doi.org/10.1016/j.ymgme.2017.03.007>
7. Nunziata A, Funcke JB, Borck G, et al. Functional and Phenotypic Characteristics of Human Leptin Receptor Mutations. J Endocr Soc 2018; 3(1): 27–41. <https://doi.org/10.1210/js.2018-00123> <PubMed>
8. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356(3): 237–47. <https://doi.org/10.1056/NEJMoa063988> <PubMed>
9. Abaturov AЕ, Nikulina AA. (Phenotypes of obesity in children, clinical manifestations and genetic associations). Zdorov’e rebenka 2020; 4(15): 72–84. (In Ukrainian).
10. Abaturov AЕ, Nikulina AA. Genotype C/C 13910 of the Lactase Gene as a Risk Factor for the Formation of Insulin-Resistant Obesity in Children. Acta Medica (Hradec Králové) 2019; 62(4): 150–5.
11. ACMG Board of Directors. Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine 2015; 17(6): 505–7. <https://doi.org/10.1038/gim.2015.41>
12. Elkins C, Fruh Sh, Jones L, et al. Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care 2019; 33(4): 494–504. <https://doi.org/10.1016/j.pedhc.2019.02.009>
13. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2019. Diabetes Care Jan 2019; 42(Suppl. 1): 13–28.
14. Alberti KG, Zimmet P, Shaw J. International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabet Med 2007; 24(5): 451–63. <https://doi.org/10.1111/j.1464-5491.2007.02157.x>
15. Weihe P, Weihrauch-Blüher S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr Obes Rep 2019; 8(4): 472–9. <https://doi.org/10.1007/s13679-019-00357-x>
16. Ranasinghe P, Jayawardena R, Gamage N, et al. The range of non-traditional anthropometric parameters to define obesity and obesity-related disease in children: a systematic review. Eur J Clin Nutr 2021; 75: 373–84. <https://doi.org/10.1038/s41430-020-00715-2>
17. Lissner L, Lanfer A, Gwozdz W et al. Television habits in relation to overweight, diet and taste preferences in European children: the IDEFICS study. 2012; 27(9): 705–15.
18. Peplies J, Börnhorst C, Günther K, et al. IDEFICS consortium. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. Int J Behav Nutr Phys Act 2016; 13(1): 97. <https://doi.org/10.1186/s12966-016-0424-4> <PubMed>
19. McCarthy HD, Cole TJ, Fry T, et al. Body fat reference curves for children. Int J Obes (Lond) 2006; 30(4): 598–602. <https://doi.org/10.1038/sj.ijo.0803232>
20. Schwandt P, von Eckardstein A, Haas G-M. Percentiles of Percentage Body Fat in German Children and Adolescents: An International Comparison. Int J Prev Med 2012; 3(12): 846–52. <https://doi.org/10.4103/2008-7802.104855> <PubMed>
21. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: WHO; 2006.
22. Hongshan J, Rong L, Shou-Wei D, et al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. In BMC Bioinformatics 2014; 15: 182.
23. Li H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics 2009; 25(14): 1754–60. <https://doi.org/10.1093/bioinformatics/btp324> <PubMed>
24. Mose LE, Wilkerson MD, Hayes DN, et al. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 2014; 30(19): 2813–5. <https://doi.org/10.1093/bioinformatics/btu376> <PubMed>
25. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 2018; 7: 1338. <https://doi.org/10.12688/f1000research.15931.1>
26. Wickham H. ggplot2. Elegant graphics for data analysis. New York. 2016 Springer.
27. R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria. 2015. (Accessed October 6, 2020, at https://www.R-project.org/).
28. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019; 47(D1): D886–D894. <https://doi.org/10.1093/nar/gky1016> <PubMed>
29. The CADD webserver (Accessed September 11, 2020, at https://cadd .gs.washington.edu/snv).
30. FILTUS (Accessed October 6, 2020, at https://github.com/magnusdv /filtus).
31. SeqVISTA (Accessed October 6, 2020, at http://zlab.bu.edu/Seq VISTA).
32. Mutationassessor.org functional impact of protein mutations release (Accessed October 6, 2020, at http://mutationassessor.org/r3/).
33. Volchikhin VI, Ivanov AI, Serikova YuI. Compensation of methodological errors in calculating standard deviations and correlation coefficients arising from the small volume of samples. Izvestiya VUZov. Volga region. Technical Science 2016; 1(37): 103–10. (In Russian).
34. Chung ST, Onuzuruike AU, Magge ShN. Cardiometabolic risk in obese children. Ann N Y Acad Sci 2018; 1411(1): 166–83. <https://doi.org/10.1111/nyas.13602> <PubMed>
35. Zimmet P, Alberti GM, Kaufman F, et al. The metabolic syndrome in children and adolescents: the IDF consensus. Diabetes Voice 2007; 52(4): 29–32.
36. Barstad LH, Júlíusson PB, Johnson LK, et al. Gender-related differences in cardiometabolic risk factors and lifestyle behaviors in treatment-seeking adolescents with severe obesity. BMC Pediatr 2018; 18(1): 61. <https://doi.org/10.1186/s12887-018-1057-3> <PubMed>
37. Jamar G, Caranti DA, de Cassia Cesar H, et al. Leptin as a cardiovascular risk marker in metabolically healthy obese: Hyperleptinemia in metabolically healthy obese. Appetite 2017; 108: 477–82. <https://doi.org/10.1016/j.appet.2016.11.013>
38. Fairbrother U, Kidd E, Malagamuwa T, Walley A. Genetics of Severe Obesity. Curr Diab Rep 2018; 18(10): 85. <https://doi.org/10.1007/s11892-018-1053-x> <PubMed>
39. Dos Santos Rocha A, de Cássia Ribeiro-Silva R, Nunes de Oliveira Costa G, et al. Food Consumption as a Modifier of the Association between LEPR Gene Variants and Excess Body Weight in Children and Adolescents: A Study of the SCAALA Cohort. Nutrients 2018; 10(8): 1117. <https://doi.org/10.3390/nu10081117> <PubMed>
40. Furusawa T, Naka I, Yamauchi T, et al. The Q223R polymorphism in LEPR is associated with obesity in Pacific Islanders. Hum Genet 2010; 127(3): 287–94. <https://doi.org/10.1007/s00439-009-0768-9>
41. Ali EMM, Diab T, Elsaid A, et al. Fat mass and obesity-associated (FTO) and leptin receptor (LEPR) gene polymorphisms in Egyptian obese subjects. Arch Physiol Biochem 2021; 127(1): 28–36. <https://doi.org/10.1080/13813455.2019.1573841>
42. Roszkowska-Gancarz M, Kurylowicz A, Polosak J, et al. Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. Endokrynol Pol 2014; 65(1): 11-6. <https://doi.org/10.5603/EP.2014.0002>
43. Li J, Yang S, Jiao X, et al. Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung 2019; 197(5): 577–84. <https://doi.org/10.1007/s00408-019-00254-z> <PubMed>
44. Li J, Yang S, Jiao X, et al. Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung 2019; 197(5): 577–84. <https://doi.org/10.1007/s00408-019-00254-z> <PubMed>
45. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57–74. <https://doi.org/10.1038/nature11247> <PubMed>
46. Almal SH, Padh H. Implications of gene copy-number variation in health and diseases. J Hum Genet 2012; 57(1): 6–13. <https://doi.org/10.1038/jhg.2011.108>
47. Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65(6): 1287–95. <https://doi.org/10.1007/s00294-019-00980-0>
48. Pettersson M, Viljakainen H, Loid P, et al. Copy Number Variants Are Enriched in Individuals With Early-Onset Obesity and Highlight Novel Pathogenic Pathways. J Clin Endocrinol Metab 2017; 102(8): 3029–39. <https://doi.org/10.1210/jc.2017-00565>
49. Selvaraju V, Venkatapoorna CMK, Babu JR, Geetha T. Salivary Amylase Gene Copy Number Is Associated with the Obesity and Inflammatory Markers in Children. Diabetes Metab Syndr Obes 2020; 13: 1695–701. <https://doi.org/10.2147/DMSO.S251359> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive