Acta Med. 2021, 64: 153-157

https://doi.org/10.14712/18059694.2021.26

Gene Expression of Antioxidant Enzymes in the Resected Intestine in Crohn’s Disease

Otakar Sotonaa,b,*, Eva Peterovác, Július Örhalmib, Tomáš Dušeka,b, Alena Mrkvicovác, Veronika Knoblochovád, Petr Lochmana,b, Ondřej Malýa,b, Jiří Párala,b, Jan Burešd

aDepartment of Field Surgery, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
bDepartment of Surgery, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
cDepartment of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
d2nd Department of Internal Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic

Received May 5, 2021
Accepted July 22, 2021

References

1. Peppercorn MA, Cheifetz AS. Definitions, epidemiology, and risk factors for inflammatory bowel disease in adults. UpToDate on-line (Topic 4066, Version 38.0), Alphen aan den Rijn, Wolters Kluwer; accessed on 10th April 2021.
2. Lukáš M, et al. Idiopatické střevní záněty. Nové trendy a mezioborové souvislosti. Praha: Grada, 2020.
3. Snapper SB, Abraham C. Immune and microbial mechanisms in the pathogenesis of inflammatory bowel disease. UpToDate on-line (Topic 4077, Version 22.0), Alphen aan den Rijn, Wolters Kluwer; accessed on 10th April 2021.
4. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126–67. <https://doi.org/10.1089/ars.2012.5149> <PubMed>
5. Sáez GT, Están-Capell N. Antioxidant Enzymes. In: Schwab M. (eds) Encyclopedia of Cancer. Berlin: Springer, 2014.
6. Frolkis AD, Dykeman J, Negrón ME, et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology 2013; 145(5): 996–1006. <https://doi.org/10.1053/j.gastro.2013.07.041>
7. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 2005; 19, Suppl A: 5A–36A. <https://doi.org/10.1155/2005/269076>
8. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 2013; 3: 71–85.
9. Hwang J, Jing J, Sejin J, Shin HM, et al. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. Redox Biology 37 (2020): 101760. <https://doi.org/10.1016/j.redox.2020.101760> <PubMed>
10. Moret-Tatay I, Ibora M, Cerrillo E, Tortosa L, Ns P, Beltrán B. Possible biomarkers in blood for Crohn’s disease: Oxidative stress and microRNAs—Current evidences and further aspects to unravel. Oxidative medicine and cellular longevity 2016 (2016).
11. Kruidenier L, Kuiper I, van Duijn W, et al. Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J Pathol 2003; 201: 7–16. <https://doi.org/10.1002/path.1407>
12. Mulder TP, Verspaget HW, Janssens AR, de Bruin PA, Peña AS, Lamers CB. Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 1991; 32(10): 1146–50. <https://doi.org/10.1136/gut.32.10.1146> <PubMed>
13. Kruidenier L, Kuiper I, Lamers CB, Verspaget HW. Intestinal oxidative damage in inflammatory bowel disease: semiquantification, localization, and association with mucosal antioxidants. J Pathol 2003; 201: 28–36. <https://doi.org/10.1002/path.1409>
14. Iantomasi T, Marraccini P, Favilli F, Vincenzini MT, Ferretti P, Tonelli F. Glutathione metabolism in Crohn’s Disease. Biochemical Medicine and Metabolic Biology 1994; 53(2): 87–91. <https://doi.org/10.1006/bmmb.1994.1062>
15. Iborra M, Moret I, Rausell F, et al. Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochemical Society Transactions 2011; 39(4): 1102–6. <https://doi.org/10.1042/BST0391102>
16. Godet PG, May GR, Sutherland LR. Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. Gut 1995; 37(5): 668–73. <https://doi.org/10.1136/gut.37.5.668> <PubMed>
17. Khalili H, Higuchi LM, Ananthakrishnan AN, Richter JM, et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut 2013; 62(8): 1153–9. <https://doi.org/10.1136/gutjnl-2012-302362> <PubMed>
18. Unfer TC, Figueiredo CG, Zanchi MM, et al. Estrogen plus progestin increase superoxide dismutase and total antioxidant capacity in postmenopausal women. Climacteric 2015; 18(3): 379–88. <https://doi.org/10.3109/13697137.2014.964669>
19. Strehlow K, Rotter S, Wassmann S, et al. Modulation of antioxidant enzyme expression and function by estrogen. Circulation Research 2003; 93(2): 170–7. <https://doi.org/10.1161/01.RES.0000082334.17947.11>
20. Underner M, Perriot J, Cosnes J, Beau P, Peiffer G, Meurice J-C. Smoking, smoking cessation and Crohn’s disease. Presse Med 2016; 45(4 Pt 1): 390–402. <https://doi.org/10.1016/j.lpm.2016.02.008>
21. Kuenzig ME, Lee SM, Eksteen B, Seow CH, et al. Smoking influences the need for surgery in patients with the inflammatory bowel diseases: a systematic review and meta-analysis incorporating disease duration. BMC Gastroenterol 2016; 16(1): 143. <https://doi.org/10.1186/s12876-016-0555-8> <PubMed>
22. Lakatos PL, Szamosi T, Lakatos L. Smoking in inflammatory bowel diseases: good, bad or ugly? World J Gastroenterol 2007; 13(46): 6134–9. <https://doi.org/10.3748/wjg.v13.i46.6134> <PubMed>
23. Yamamoto, T, Keighley MR. Smoking and disease recurrence after operation for Crohn’s disease. British Journal of Surgery 2000; 87(4): 398–404. <https://doi.org/10.1046/j.1365-2168.2000.01443.x>
24. Bureš J, Fixa B, Komárková O, Fingerland A. Non-smoking: a feature of ulcerative colitis. Br Med J 1982; 285(6339): 440. <https://doi.org/10.1136/bmj.285.6339.440-b>
25. Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. The Journal of Biological Chemistry 2009; 284(12): 7903–13. <https://doi.org/10.1074/jbc.M806920200> <PubMed>
26. Wang L, Huang H, Fan Y, et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxid Med Cell Longev 2014; 2014: 960362.
27. Christian P, Su Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. American Journal of Physiology – Endocrinology and Metabolism 2014; 307(9): 729–37. <https://doi.org/10.1152/ajpendo.00194.2014>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive