Acta Med. 2021, 64: 153-157
https://doi.org/10.14712/18059694.2021.26
Gene Expression of Antioxidant Enzymes in the Resected Intestine in Crohn’s Disease
References
1. Peppercorn MA, Cheifetz AS. Definitions, epidemiology, and risk factors for inflammatory bowel disease in adults. UpToDate on-line (Topic 4066, Version 38.0), Alphen aan den Rijn, Wolters Kluwer; accessed on 10th April 2021.
2. Lukáš M, et al. Idiopatické střevní záněty. Nové trendy a mezioborové souvislosti. Praha: Grada, 2020.
3. Snapper SB, Abraham C. Immune and microbial mechanisms in the pathogenesis of inflammatory bowel disease. UpToDate on-line (Topic 4077, Version 22.0), Alphen aan den Rijn, Wolters Kluwer; accessed on 10th April 2021.
4. Antioxid Redox Signal 2014; 20(7): 1126–67.
< M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. https://doi.org/10.1089/ars.2012.5149>
<PubMed>
5. Sáez GT, Están-Capell N. Antioxidant Enzymes. In: Schwab M. (eds) Encyclopedia of Cancer. Berlin: Springer, 2014.
6. Gastroenterology 2013; 145(5): 996–1006.
< AD, Dykeman J, Negrón ME, et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. https://doi.org/10.1053/j.gastro.2013.07.041>
7. Can J Gastroenterol 2005; 19, Suppl A: 5A–36A.
< MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. https://doi.org/10.1155/2005/269076>
8. Biostat Bioinform Biomath 2013; 3: 71–85.
X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis.
9. Redox Biology 37 (2020): 101760.
< J, Jing J, Sejin J, Shin HM, et al. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. https://doi.org/10.1016/j.redox.2020.101760>
<PubMed>
10. Moret-Tatay I, Ibora M, Cerrillo E, Tortosa L, Ns P, Beltrán B. Possible biomarkers in blood for Crohn’s disease: Oxidative stress and microRNAs—Current evidences and further aspects to unravel. Oxidative medicine and cellular longevity 2016 (2016).
11. J Pathol 2003; 201: 7–16.
< L, Kuiper I, van Duijn W, et al. Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. https://doi.org/10.1002/path.1407>
12. Gut 1991; 32(10): 1146–50.
< TP, Verspaget HW, Janssens AR, de Bruin PA, Peña AS, Lamers CB. Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. https://doi.org/10.1136/gut.32.10.1146>
<PubMed>
13. J Pathol 2003; 201: 28–36.
< L, Kuiper I, Lamers CB, Verspaget HW. Intestinal oxidative damage in inflammatory bowel disease: semiquantification, localization, and association with mucosal antioxidants. https://doi.org/10.1002/path.1409>
14. Biochemical Medicine and Metabolic Biology 1994; 53(2): 87–91.
< T, Marraccini P, Favilli F, Vincenzini MT, Ferretti P, Tonelli F. Glutathione metabolism in Crohn’s Disease. https://doi.org/10.1006/bmmb.1994.1062>
15. Biochemical Society Transactions 2011; 39(4): 1102–6.
< M, Moret I, Rausell F, et al. Role of oxidative stress and antioxidant enzymes in Crohn’s disease. https://doi.org/10.1042/BST0391102>
16. Gut 1995; 37(5): 668–73.
< PG, May GR, Sutherland LR. Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. https://doi.org/10.1136/gut.37.5.668>
<PubMed>
17. Gut 2013; 62(8): 1153–9.
< H, Higuchi LM, Ananthakrishnan AN, Richter JM, et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. https://doi.org/10.1136/gutjnl-2012-302362>
<PubMed>
18. Climacteric 2015; 18(3): 379–88.
< TC, Figueiredo CG, Zanchi MM, et al. Estrogen plus progestin increase superoxide dismutase and total antioxidant capacity in postmenopausal women. https://doi.org/10.3109/13697137.2014.964669>
19. Circulation Research 2003; 93(2): 170–7.
< K, Rotter S, Wassmann S, et al. Modulation of antioxidant enzyme expression and function by estrogen. https://doi.org/10.1161/01.RES.0000082334.17947.11>
20. Presse Med 2016; 45(4 Pt 1): 390–402.
< M, Perriot J, Cosnes J, Beau P, Peiffer G, Meurice J-C. Smoking, smoking cessation and Crohn’s disease. https://doi.org/10.1016/j.lpm.2016.02.008>
21. BMC Gastroenterol 2016; 16(1): 143.
< ME, Lee SM, Eksteen B, Seow CH, et al. Smoking influences the need for surgery in patients with the inflammatory bowel diseases: a systematic review and meta-analysis incorporating disease duration. https://doi.org/10.1186/s12876-016-0555-8>
<PubMed>
22. World J Gastroenterol 2007; 13(46): 6134–9.
< PL, Szamosi T, Lakatos L. Smoking in inflammatory bowel diseases: good, bad or ugly? https://doi.org/10.3748/wjg.v13.i46.6134>
<PubMed>
23. British Journal of Surgery 2000; 87(4): 398–404.
< , T, Keighley MR. Smoking and disease recurrence after operation for Crohn’s disease. https://doi.org/10.1046/j.1365-2168.2000.01443.x>
24. Br Med J 1982; 285(6339): 440.
< J, Fixa B, Komárková O, Fingerland A. Non-smoking: a feature of ulcerative colitis. https://doi.org/10.1136/bmj.285.6339.440-b>
25. The Journal of Biological Chemistry 2009; 284(12): 7903–13.
< Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. https://doi.org/10.1074/jbc.M806920200>
<PubMed>
26. Oxid Med Cell Longev 2014; 2014: 960362.
L, Huang H, Fan Y, et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway.
27. American Journal of Physiology – Endocrinology and Metabolism 2014; 307(9): 729–37.
< P, Su Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. https://doi.org/10.1152/ajpendo.00194.2014>