Acta Med. 2021, 64: 145-152
https://doi.org/10.14712/18059694.2021.25
A Comparison of the Neuroprotective and Reactivating Efficacy of a Novel Bispyridinium Oxime K870 with Commonly Used Pralidoxime and the Oxime HI-6 in Tabun-Poisoned Rats
References
1. Black R. Development, historical use and properties of chemical warfare agents. In: Worek F, Jenner J, Thierman H, eds. Chemical Warfare Toxicology, Royal Society of Chemistry, Cambridge, 2016: 1–28.
2. J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 2004; 38: 151–216.
<https://doi.org/10.1016/S0065-2423(04)38006-6>
3. MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11: 315–35.
<https://doi.org/10.2174/1570159X11311030006>
<PubMed>
4. RT, Ribeiro TS, Figueroa-Villar JD. Organophosphorus compounds as chemical warfare agents: a review. J Braz Chem Soc 2009; 20: 407–28.
<https://doi.org/10.1590/S0103-50532009000300003>
5. J, Bajgar J. Tabun – reappearance 50 years later (in Czech). Chem Listy 1999; 93: 27–31.
6. F, Akfur C, Tunemalm AK, Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry 2006; 45: 74–81.
<https://doi.org/10.1021/bi051286t>
7. A, Eisenkraft A, Finkelstein A, Schein O, Rotman E, Dushnitsky T. A decade after the Tokyo sarin attack: a review of neurological follow-up of the victims. Mil Med 2007; 172: 607–10.
<https://doi.org/10.7205/MILMED.172.6.607>
8. H, Abe O, Kasai K, et al. Human brain structural changes related to acute single exposure to sarin. Ann Neuro 2007; 61: 37–46.
<https://doi.org/10.1002/ana.21024>
9. M, Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 2009; 16: 2177–88.
<https://doi.org/10.2174/092986709788612729>
10. TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol Rev 2006; 25: 297–323.
<https://doi.org/10.2165/00139709-200625040-00009>
11. CM, Snider TH, Babin MC, Jett DA, Platoff GEJr, Yeung DT. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol Appl Pharmacol 2014; 281: 254–65.
<https://doi.org/10.1016/j.taap.2014.10.009>
<PubMed>
12. T, Malinak D, Marakovic N, et al. Pyridinium oximes with ortho-positioned chlorine moiety exhibit improved physicochemical properties and efficient reactivation of human acetylcholinesterase inhibited by several nerve agents. J Med Chem 2018; 61: 10753–66.
<https://doi.org/10.1021/acs.jmedchem.8b01398>
13. D, Kuca K, Stodulka P, et al. HPLC analysis of HI-6 dichloride and dimethanesulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal Lett 2007; 40: 2783–7.
<https://doi.org/10.1080/00032710701588531>
14. J, Misik J, Hatlapatkova J et al. The evaluation of the reactivating nad neuroprotective efficacy of two newly prepared bispyridinium oximes (K305, K307) in tabun-poisoned rats – a comparison with trimedoxime and the oxime K203. Molecules 2017; 22: 1152.
<https://doi.org/10.3390/molecules22071152>
<PubMed>
15. VC, Tilson H, McPhail RC et al. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. NeuroToxicology 1997; 18: 929–38.
16. GL, Courtney DK, Andres VJr, Feartherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–93.
<https://doi.org/10.1016/0006-2952(61)90145-9>
17. JG, Hansen AS, Boulet CA. Efficacy of HLö-7 and pyrimidoxime as antidotes of nerve agent poisoning in mice. Arch Toxicol 1992; 66: 216–9.
<https://doi.org/10.1007/BF01974018>
18. Paxinos G, Watson C. The rat brain in stereotactic coordinates, 6th ed. Academic Press, San Diego, 2006: 307.
19. Y. Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. NeuroToxicology 2012; 33: 391–400.
<https://doi.org/10.1016/j.neuro.2012.03.011>
20. TM, Duniho SM, McDonough JH. Control of NA-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 2003; 188: 69–80.
<https://doi.org/10.1016/S0041-008X(03)00019-X>
21. J, Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J Appl Biomed 2006; 4: 123–34.
<https://doi.org/10.32725/jab.2006.013>
22. JHJr, Zoeffel LD, McMonagle J, Copeland TL, Smith CD, Shih TM. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea-pigs. Epilepsy Res 2000; 38: 1–14.
<https://doi.org/10.1016/S0920-1211(99)00060-1>
23. M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr Topic Med Chem 2012; 12: 1775–89.
<https://doi.org/10.2174/1568026611209061775>
24. J, Krejcova G. Neuroprotective effects of currently used antidotes in tabun-poisoned rats. Pharmacol Toxicol 2003; 92: 258–64.
<https://doi.org/10.1034/j.1600-0773.2003.920602.x>
25. F, Widmann R, Knopff O, Szinicz L. Reactivating potency of obidoxime, pralidoxime, HI-6 and HLö-7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. Arch Toxicol 1998; 72: 237–43.
<https://doi.org/10.1007/s002040050495>
26. Karasova J, Pohanka M, Musilek K, Zemek F, Kuca K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol in Vitro 2010; 24: 1838–44.
27. MC, van Grol M, Noort D. Peripheral site ligand conjugation to a non quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol Lett 2011; 206: 54–9.
<https://doi.org/10.1016/j.toxlet.2011.04.004>
28. P, Nachon F, Lockridge O. Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact 2010; 187: 157–62.
<https://doi.org/10.1016/j.cbi.2010.03.027>
29. K, Jun D, Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev Med Chem 2006; 6: 269–77.
<https://doi.org/10.2174/138955706776073510>
30. K, Kuca K, Jun D, Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr Org Chem 2007; 11: 229–38.
<https://doi.org/10.2174/138527207779316417>
31. KV, Tattersall JEH, Timperley CM, et al. Interaction of bispyridinium compounds with the orthosteric binding site of human α7 and Torpedo californica nicotinic acetylcholine receptors (nAChRs). Toxicol Lett 2011; 206: 100–4.
<https://doi.org/10.1016/j.toxlet.2011.06.009>
32. U, Gaal K, Kostenis E, Tränkle C, Mohr K, Holzgrabe U. Muscarinic allosteric modulators. Atypical structure-activity-relationships in bispyridinium-type compounds. Arch Pharm Chem Life Sci 2006; 339: 207–12.
<https://doi.org/10.1002/ardp.200600005>
33. HPM, Busker RW, Melchers BPC, Bruijnzeel PLB. Pharmacological effects of oximes: how relevant are they? Arch Toxicol 1996; 70: 779–86.
<https://doi.org/10.1007/s002040050340>


