Acta Med. 2021, 64: 85-90
https://doi.org/10.14712/18059694.2021.15
The Effect of Lactobacillus casei on Experimental Porcine Inflammatory Bowel Disease Induced by Dextran Sodium Sulphate
References
1. Autophagy 2019: 1–14.
A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.
2. Nutr Rev 2012; 70: S45–56.
< WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. https://doi.org/10.1111/j.1753-4887.2012.00505.x>
3. Venema K, Do Carmo AP. Future possibilities for pro- and prebiotics: Is the sky the limit? In: Venema K, Do Carmo AP, Eds. Probiotics and Prebiotics. Current Research and Future Trends. Norfolk: Caister Academic Press, 2015: 489–93.
4. Nutrition 2018; 45: 125–34.
< EA, Roy T, D’Adamo CR, Wieland LS. Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. https://doi.org/10.1016/j.nut.2017.06.024>
<PubMed>
5. Gut 2004; 53: 1617–23.
< W, Fric P, Pokrotnieks J, Lukas M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. https://doi.org/10.1136/gut.2003.037747>
<PubMed>
6. Aliment Pharmacol Ther 2017; 46: 389–400.
< Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the fficacy of probiotics in inflammatory bowel disease. https://doi.org/10.1111/apt.14203>
7. J Crohns Colitis 2017; 11: 3–25.
< F, Dignass A, Annese V, et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and medical management. https://doi.org/10.1093/ecco-jcc/jjw168>
8. Cochrane Database Syst Rev 2008; CD006634.
AD, Thomas AG, Akobeng AK. Probiotics for induction of remission in Crohn’s disease.
9. Cochrane Database Syst Rev 2009; CD006873.
G, Bennett G, Patil S, Cheifetz A, Moss AC. Interventions for prevention of post-operative recurrence of Crohn’s disease.
10. Cochrane Database Syst Rev 2006; CD004826.
VE, Fortun PJ, Hawkey CJ, Bath-Hextall F. Probiotics for maintenance of remission in Crohn’s disease.
11. N Engl J Med 2011; 365: 1713–25.
< S, Fiocchi C. Ulcerative colitis. https://doi.org/10.1056/NEJMra1102942>
12. J Crohns Colitis 2017; 11: 649–70.
< F, Gionchetti P, Eliakim R, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. https://doi.org/10.1093/ecco-jcc/jjx008>
13. J Crohns Colitis 2017; 11: 1512.
< M, Eliakim R, Bettenworth D, et al. European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current management. https://doi.org/10.1093/ecco-jcc/jjx105>
14. Cochrane Database Syst Rev 2007; CD005573.
P, McKay D, Kirk S, Gardiner K. Probiotics for induction of remission in ulcerative colitis.
15. Cochrane Database Syst Rev 2011; CD007443.
K, Gordon M, Fagbemi AO, Thomas AG, Akobeng AK. Probiotics for maintenance of remission in ulcerative colitis.
16. Cochrane Database Syst Rev 2019; CD001176.
N, Zhang B, Holubar SD, Pardi DS, Singh S. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis.
17. Dig Dis Sci 1993; 38: 529–37.
< T, Kobayashi H, Kishimoto S, Kajiyama G, Shimamoto F, Brown WR. Histochemical study of colonic cancer in experimental colitis of rats. https://doi.org/10.1007/BF01316510>
18. Gastroenterology 1994; 107: 1643–52.
< LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulphate sodium-induced colitis occurs in severe combined immunodeficient mice. https://doi.org/10.1016/0016-5085(94)90803-6>
19. Gut 1996; 39: 234–41.
< J, Chen SF, Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. https://doi.org/10.1136/gut.39.2.234>
<PubMed>
20. Clin Nutr 2006; 25: 454–65.
< J, Hontecillas R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. https://doi.org/10.1016/j.clnu.2005.12.008>
21. Physiol Res 2017; 66: 147–62.
< D, Young D, Kim CJ, et al. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulphate in young pigs. https://doi.org/10.33549/physiolres.933259>
22. Sci Rep 2017; 7: 3224.
< Y, Yan H, Diao H, et al. Early Gut Microbiota Intervention Suppresses DSS-Induced Inflammatory Responses by Deactivating TLR/NLR Signalling in Pigs. https://doi.org/10.1038/s41598-017-03161-6>
<PubMed>
23. Biopharm Drug Dispos 1995; 16: 351–80.
< TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. https://doi.org/10.1002/bdd.2510160502>
24. Pharm Res 2013; 30: 1–15.
< C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. https://doi.org/10.1007/s11095-012-0911-5>
25. BMC Vet Res 2019; 15: 172.
< S, Fang S, He M, Huang X, et al. Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. https://doi.org/10.1186/s12917-019-1918-5>
<PubMed>
26. PLoS ONE 2019; 14: e0220843.
< D, Chang SY, Bogere P, et al. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. https://doi.org/10.1371/journal.pone.0220843>
<PubMed>
27. Microbiome 2019; 7: 109.
< X, Tsai T, Deng F, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. https://doi.org/10.1186/s40168-019-0721-7>
<PubMed>
28. Hum Exp Toxicol 2011; 30: 1955–62.
< J, Pejchal J, Kvetina J, et al. Morphometric analysis of the porcine gastrointestinal tract in a 10-day high-dose indomethacin administration with or without probiotic bacteria Escherichia coli Nissle 1917. https://doi.org/10.1177/0960327111403174>
29. World J Gastroenterol 2011; 17: 609–17.
< J, Smajs D, Kvetina J, et al. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. https://doi.org/10.3748/wjg.v17.i5.609>
<PubMed>
30. Nutrients 2019; 11: e1610.
< L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, Wall-Medrano A, González-Córdova AF. Milk fermented with Lactobacillus fermentum ameliorates indomethacin-induced intestinal inflammation: An exploratory study. https://doi.org/10.3390/nu11071610>
<PubMed>
31. Nutrients 2017; 9: e1329.
< T, Moriyama E, Arai S, et al. Meta-analysis of fecal microbiota and metabolites in experimental colitic mice during the inflammatory and healing phases. https://doi.org/10.3390/nu9121329>
<PubMed>
32. Mediators Inflamm 2018; 2018: 9416391.
Y, Zhao X, Zhu Y, Ma J, Ma H, Zhang H. Probiotic mixture protects dextran sulphate sodium-induced colitis by altering tight junction protein expressions and increasing tregs.
33. Food Funct 2019; 10: 397–409.
< G, Liu Y, Lu Z, et al. The ameliorative effect of a Lactobacillus strain with good adhesion ability against dextran sulphate sodium-induced murine colitis. https://doi.org/10.1039/C8FO01453A>
34. J Dairy Sci 2019; 102: 37–53.
< E, Zlotkowska D, Wroblewska B. Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in a mouse model of dextran sulphate sodium-induced colitis. https://doi.org/10.3168/jds.2018-14520>
35. Basic Clin Pharmacol Toxicol 2018; 123: 233–5.
< P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. https://doi.org/10.1111/bcpt.13059>
36. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 2009.
37. PLoS Biol 2010; 8: e1000412.
< C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. https://doi.org/10.1371/journal.pbio.1000412>
<PubMed>
38. Am J Physiol 1995; 269: G119–125.
CB, Wallace JL. Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs.
39. Radiat Res 2016; 186: 264–74.
< J, Sinkorova Z, Tichy A, et al. Epidermal Growth Factor Attenuates Delayed Ionizing Radiation-Induced Tissue Damage in Bone Marrow Transplanted Mice. https://doi.org/10.1667/RR14247.1>
40. Venema K, Meijerink M. Lactobacilli as probiotics: Discovering new functional aspects and target sites. In: Venema K, Do Carmo AP, Eds. Probiotics and Prebiotics. Current Research and Future Trends. Norfolk: Caister Academic Press, 2015: 29–41.
41. Microb Cell Fact 2007; 6: 22.
< T, Bermúdez-Humarán L, Gratadoux JJ, et al. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. https://doi.org/10.1186/1475-2859-6-22>
<PubMed>
42. Int J Food Microbiol 2010; 144: 35–41.
< L, Rochat T, Sokol H, et al. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. https://doi.org/10.1016/j.ijfoodmicro.2010.03.037>
43. J Gastroenterol Hepatol 2012; 27: 1205–12.
< CC, Zhang L, Li ZJ, et al. Protective effects of cathelicidin-encoding Lactococcus lactis in murine ulcerative colitis. https://doi.org/10.1111/j.1440-1746.2012.07158.x>
44. J Microbiol Biotechnol 2008; 18: 1975–83.
S-W, Lee C-H, Kim J-Y, Kim J-Y, Sung M-H, Poo H. Lactobacillus casei secreting alpha-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c mice.
45. J Dig Dis 2013; 14: 76–83.
< ZB, Chen J, Chen JJ, et al. Effect of recombinant Lactobacillus casei expressing interleukin-10 in dextran sulphate sodium-induced colitis mice. https://doi.org/10.1111/1751-2980.12006>
46. Clin Exp Immunol 2008; 151: 182–9.
< YW, Choi JH, Oh T-Y, Eun CS, Han DS. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. https://doi.org/10.1111/j.1365-2249.2007.03549.x>
<PubMed>
47. Folia Microbiol (Praha) 2006; 51: 478–84.
< A, Frolova L, Kverka M, et al. Oral administration of probiotic bacteria (E. coli Nissle, E. coli O83, Lactobacillus casei) influences the severity of dextran sodium sulphate-induced colitis in BALB/c mice. https://doi.org/10.1007/BF02931595>
48. J Med Food 2019; 22: 271–6.
< JM, Chang MH, Heo W, et al. LB-9, novel probiotic lactic acid bacteria, ameliorates dextran sodium sulphate-induced colitis in mice by inhibiting TNF-α-mediated apoptosis of intestinal epithelial cells. https://doi.org/10.1089/jmf.2018.4236>
49. Eur J Nutr 2014; 53: 105–15.
< K, Miyazawa K, Hosoda M, Hiramatsu M, Yan F, He F. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. https://doi.org/10.1007/s00394-013-0506-x>
<PubMed>
50. Curr Med Sci 2019; 39: 371–8.
< X-J, Yu R, Zou K-F. Probiotic mixture VSL#3 alleviates dextran sulphate sodium-induced colitis in mice by downregulating T follicular helper cells. https://doi.org/10.1007/s11596-019-2045-z>
51. PLoS ONE 2011; 6: e27961.
< Z, Kverka M, Klimesova K, et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. https://doi.org/10.1371/journal.pone.0027961>
<PubMed>
52. Int J Mol Sci 2013; 15: 15–28.
< L-X, Chang B, Dai C, Gao N, Liu W-X, Jiang M. Heat-killed VSL#3 ameliorates dextran sulphate sodium (DSS)-induced acute experimental colitis in rats. https://doi.org/10.3390/ijms15010015>
<PubMed>
53. Int J Clin Exp Med 2015; 8: 20072–8.
L-X, Chang B, Wang B-Y, Liu W-X, Jiang M. Live and heat-killed probiotic: effects on chronic experimental colitis induced by dextran sulphate sodium (DSS) in rats.
54. Int J Food Microbiol 2005; 103: 143–55.
< MV, Koninkx JFJG, Vos JG, Huis in’t Veld JHJ, van Dijk JE. Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice. https://doi.org/10.1016/j.ijfoodmicro.2004.11.032>
55. Dig Dis Sci 2002; 47: 1447–57.
< A, Latella G, Sferra R, Caprilli R, Gaudio E. Increased proliferation and apoptosis of colonic epithelial cells in dextran sulphate sodium-induced colitis in rats. https://doi.org/10.1023/A:1015931128583>
56. Oncol Rep 2010; 24: 869–74.
< Y, Mukaisyo K, Sugihara H, Fujiyama Y, Hattori T. Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulphate sodium-induced colitis in mice. https://doi.org/10.3892/or.2010.869>
57. Gastroenterology 2012; 143: 1017–26.e9.
< HSP, West GA, Rebert N, de la Motte C, Drazba J, Fiocchi C. Increased levels of survivin, via association with heat shock protein 90, in mucosal T cells from patients with Crohn’s disease. https://doi.org/10.1053/j.gastro.2012.06.039>
<PubMed>
58. Am J Physiol Gastrointest Liver Physiol 2009; 296: G1140–9.
< R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. https://doi.org/10.1152/ajpgi.90534.2008>
59. PLoS ONE 2012; 7: e31238.
< J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, et al. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. https://doi.org/10.1371/journal.pone.0031238>
<PubMed>
60. Gut Microbes 2014; 5: 494–503.
< JS, Nagalingam NA, Song Y, Onizawa M, Lee JW, Lynch SV. Amelioration of DSS-induced murine colitis by VSL#3 supplementation is primarily associated with changes in ileal microbiota composition. https://doi.org/10.4161/gmic.32147>
61. Venema K. Functional aspects of the endogenous microbiota that benefit the host. In: Venema K, Do Carmo AP, Eds. Probiotics and Prebiotics. Current Research and Future Trends. Norfolk: Caister Academic Press, 2015: 221–33.