Acta Med. 2021, 64: 1-7

https://doi.org/10.14712/18059694.2021.1

The Connection between MicroRNAs from Visceral Adipose Tissue and Non-Alcoholic Fatty Liver Disease

Veronika ZubáňováaID, Zuzana ČervinkovábID, Otto KučerabID, Vladimír PaličkaaID

aDepartment of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
bDepartment of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic

Received July 22, 2020
Accepted November 27, 2020

References

1. Eslam M, Sanyal AJ, George J, Panel IC. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158(7): 1999–2014.e1. <https://doi.org/10.1053/j.gastro.2019.11.312>
2. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11–20. <https://doi.org/10.1038/nrgastro.2017.109>
3. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease – Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73–84. <https://doi.org/10.1002/hep.28431>
4. Iravani F, Hosseini N, Mojarrad M. Role of MicroRNAs in Pathophysiology of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Middle East J Dig Dis 2018; 10(4): 213–9. <https://doi.org/10.15171/mejdd.2018.113> <PubMed>
5. Yoo W, Gjuka D, Stevenson HL, et al. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS One 2017; 12(12): e0189965. <https://doi.org/10.1371/journal.pone.0189965> <PubMed>
6. Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013; 425(19): 3582–600. <https://doi.org/10.1016/j.jmb.2013.03.007> <PubMed>
7. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12(12): 861–74. <https://doi.org/10.1038/nrg3074>
8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–97. <https://doi.org/10.1016/S0092-8674(04)00045-5>
9. Baffy G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J Clin Med 2015; 4(12): 1977–88. <https://doi.org/10.3390/jcm4121953> <PubMed>
10. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653–62. <https://doi.org/10.1242/dev.02073>
11. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 2011; 39(16): 6845–53. <https://doi.org/10.1093/nar/gkr330> <PubMed>
12. Ma L, Qu L. The function of microRNAs in renal development and pathophysiology. J Genet Genomics 2013; 40(4): 143–52. <https://doi.org/10.1016/j.jgg.2013.03.002>
13. Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 2016; 40(1): 88–101. <https://doi.org/10.1038/ijo.2015.170> <PubMed>
14. Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010; 11(5): 354–61. <https://doi.org/10.1111/j.1467-789X.2009.00659.x>
15. Uygun A, Ozturk K, Demirci H, et al. The association of nonalcoholic fatty liver disease with genetic polymorphisms: a multicenter study. Eur J Gastroenterol Hepatol 2017; 29(4): 441–7. <https://doi.org/10.1097/MEG.0000000000000813>
16. Asrih M, Jornayvaz FR. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol Cell Endocrinol 2015; 418(Pt 1): 55–65. <https://doi.org/10.1016/j.mce.2015.02.018>
17. Teufel A, Itzel T, Erhart W, et al. Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients. Gastroenterology 2016; 151(3): 513–25.e0. <https://doi.org/10.1053/j.gastro.2016.05.051>
18. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med 2011; 9: 48. <https://doi.org/10.1186/1741-7015-9-48> <PubMed>
19. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012; 55(6): 2005–23. <https://doi.org/10.1002/hep.25762>
20. Nascimbeni F, Pais R, Bellentani S, et al. From NAFLD in clinical practice to answers from guidelines. J Hepatol 2013; 59(4): 859–71. <https://doi.org/10.1016/j.jhep.2013.05.044>
21. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2(11): 901–10. <https://doi.org/10.1016/S2213-8587(14)70032-4>
22. Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol 2019; 71(4): 793–801. <https://doi.org/10.1016/j.jhep.2019.06.021>
23. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313(22): 2263–73. <https://doi.org/10.1001/jama.2015.5370>
24. Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148(3): 547–55. <https://doi.org/10.1053/j.gastro.2014.11.039>
25. Sharma H, Estep M, Birerdinc A, et al. Expression of genes for microRNA- processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28(8): 1410–5. <https://doi.org/10.1111/jgh.12268>
26. Klöting N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4(3): e4699. <https://doi.org/10.1371/journal.pone.0004699> <PubMed>
27. Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes (Lond) 2014; 38(3): 371–8. <https://doi.org/10.1038/ijo.2013.152> <PubMed>
28. Capobianco V, Nardelli C, Ferrigno M, et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J Proteome Res 2012; 11(6): 3358–69. <https://doi.org/10.1021/pr300152z>
29. Pérez-Pérez R, Ortega-Delgado FJ, García-Santos E, et al. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J Proteome Res 2009; 8(4): 1682–93. <https://doi.org/10.1021/pr800942k>
30. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548–56. <https://doi.org/10.1210/jc.2004-0395>
31. Michalakis K, Mintziori G, Kaprara A, Tarlatzis BC, Goulis DG. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism 2013; 62(4): 457–78. <https://doi.org/10.1016/j.metabol.2012.08.012>
32. Chen CH, Huang MH, Yang JC, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults. J Clin Gastroenterol 2006; 40(8): 745–52. <https://doi.org/10.1097/00004836-200609000-00016>
33. Das K, Mukherjee PS, Ghosh A, et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 2010; 51(5): 1593–602. <https://doi.org/10.1002/hep.23567>
34. Yu AH, Duan-Mu YY, Zhang Y, et al. Correlation between Non-Alcoholic Fatty Liver Disease and Visceral Adipose Tissue in Non-Obese Chinese Adults: A CT Evaluation. Korean J Radiol 2018; 19(5): 923–9. <https://doi.org/10.3348/kjr.2018.19.5.923> <PubMed>
35. Chen B, Lam KS, Wang Y, et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 2006; 341(2): 549–56. <https://doi.org/10.1016/j.bbrc.2006.01.004>
36. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006; 116(1): 33–5. <https://doi.org/10.1172/JCI27280> <PubMed>
37. Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond) 2005; 29(1): 146–50. <https://doi.org/10.1038/sj.ijo.0802839>
38. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116(1): 115–24. <https://doi.org/10.1172/JCI24335> <PubMed>
39. Vanni E, Bugianesi E, Kotronen A, et al. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 2010; 42(5): 320–30. <https://doi.org/10.1016/j.dld.2010.01.016>
40. Lee YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep 2005; 5(1): 70–5. <https://doi.org/10.1007/s11892-005-0071-7>
41. Estep JM, Baranova A, Hossain N, et al. Expression of cytokine signaling genes in morbidly obese patients with non-alcoholic steatohepatitis and hepatic fibrosis. Obes Surg 2009; 19(5): 617–24. <https://doi.org/10.1007/s11695-009-9814-x>
42. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 2010; 5: 145–71. <https://doi.org/10.1146/annurev-pathol-121808-102132>
43. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112(1): 91–100. <https://doi.org/10.1172/JCI200317797>
44. Linder K, Arner P, Flores-Morales A, Tollet-Egnell P, Norstedt G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women. J Lipid Res 2004; 45(1): 148–54. <https://doi.org/10.1194/jlr.M300256-JLR200>
45. van Beek EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J. Intra- and interindividual variation in gene expression in human adipose tissue. Pflugers Arch 2007; 453(6): 851–61. <https://doi.org/10.1007/s00424-006-0164-4>
46. Zhang T, Zhao X, Steer CJ, Yan G, Song G. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet. Metabolism 2018; 85: 183–91. <https://doi.org/10.1016/j.metabol.2018.03.023> <PubMed>
47. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010; 11(1): 11–8. <https://doi.org/10.1111/j.1467-789X.2009.00623.x>
48. Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 2015; 11(5): 276–88. <https://doi.org/10.1038/nrendo.2015.25>
49. Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2010; 32(3): 487–97. <https://doi.org/10.1111/j.1365-2036.2010.04366.x>
50. Celikbilek M, Baskol M, Taheri S, et al. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol 2014; 6(8): 613–20. <https://doi.org/10.4254/wjh.v6.i8.613> <PubMed>
51. Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48(6): 1810–20. <https://doi.org/10.1002/hep.22569> <PubMed>
52. Chartoumpekis DV, Zaravinos A, Ziros PG, et al. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 2012; 7(4): e34872. <https://doi.org/10.1371/journal.pone.0034872> <PubMed>
53. Latorre J, Moreno-Navarrete JM, Mercader JM, et al. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond) 2017; 41(4): 620–30. <https://doi.org/10.1038/ijo.2017.21>
54. Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 2011; 351(1–2): 197–205. <https://doi.org/10.1007/s11010-011-0727-3>
55. Spengler EK, Loomba R. Recommendations for Diagnosis, Referral for Liver Biopsy, and Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Mayo Clin Proc 2015; 90(9): 1233–46. <https://doi.org/10.1016/j.mayocp.2015.06.013> <PubMed>
56. Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci 2018; 19(12): 3966. <https://doi.org/10.3390/ijms19123966> <PubMed>
57. Pirola CJ, Fernández Gianotti T, Castaño GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015; 64(5): 800–12. <https://doi.org/10.1136/gutjnl-2014-306996> <PubMed>
58. Enache LS, Enache EL, Ramière C, et al. Circulating RNA molecules as biomarkers in liver disease. Int J Mol Sci 2014; 15(10): 17644–66. <https://doi.org/10.3390/ijms151017644> <PubMed>
59. Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13: 357. <https://doi.org/10.1186/1471-2164-13-357> <PubMed>
60. Alexander R, Lodish H, Sun L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 2011; 15(5): 623–36. <https://doi.org/10.1517/14728222.2011.561317> <PubMed>
61. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432(7014): 226–30. <https://doi.org/10.1038/nature03076>
62. Tay YM, Tam WL, Ang YS, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 2008; 26(1): 17–29. <https://doi.org/10.1634/stemcells.2007-0295>
63. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279(50): 52361–5. <https://doi.org/10.1074/jbc.C400438200>
64. Bengestrate L, Virtue S, Campbell M, et al. Genome-wide profiling of microRNAs in adipose mesenchymal stem cell differentiation and mouse models of obesity. PLoS One 2011; 6(6): e21305. <https://doi.org/10.1371/journal.pone.0021305> <PubMed>
65. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012; 227(1): 183–93. <https://doi.org/10.1002/jcp.22716>
66. Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem 2015; 396(3): 235–44. <https://doi.org/10.1515/hsz-2014-0241>
67. Can U, Buyukinan M, Yerlikaya FH. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr Obes 2016; 11(3): 228–34. <https://doi.org/10.1111/ijpo.12050>
68. Ling HY, Ou HS, Feng SD, et al. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 2009; 36(9): e32–9. <https://doi.org/10.1111/j.1440-1681.2009.05207.x>
69. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276(8): 2348–58. <https://doi.org/10.1111/j.1742-4658.2009.06967.x> <PubMed>
70. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. Nutr J 2014; 13: 17. <https://doi.org/10.1186/1475-2891-13-17> <PubMed>
71. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62(3): 720–33. <https://doi.org/10.1016/j.jhep.2014.10.039>
72. Sugden MC, Caton PW, Holness MJ. PPAR control: it’s SIRTainly as easy as PGC. J Endocrinol 2010; 204(2): 93–104. <https://doi.org/10.1677/JOE-09-0359>
73. Zhong X, Liu H. Honokiol attenuates diet-induced non-alcoholic steatohepatitis by regulating macrophage polarization through activating peroxisome proliferator-activated receptor γ. J Gastroenterol Hepatol 2018; 33(2): 524–32. <https://doi.org/10.1111/jgh.13853>
74. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58(5): 1050–7. <https://doi.org/10.2337/db08-1299> <PubMed>
75. Price NL, Holtrup B, Kwei SL, et al. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Mol Cell Biol 2016; 36(7): 1180–93. <https://doi.org/10.1128/MCB.00745-15> <PubMed>
76. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 2013; 5(10): 1602–12. <https://doi.org/10.1002/emmm.201302647> <PubMed>
77. Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59(7): 969–74. <https://doi.org/10.1136/gut.2009.205088>
78. Imajo K, Yoneda M, Kessoku T, et al. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int J Mol Sci 2013; 14(11): 21833–57. <https://doi.org/10.3390/ijms141121833> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive