Acta Med. 2021, 64: 1-7
https://doi.org/10.14712/18059694.2021.1
The Connection between MicroRNAs from Visceral Adipose Tissue and Non-Alcoholic Fatty Liver Disease
References
1. Gastroenterology 2020; 158(7): 1999–2014.e1.
< M, Sanyal AJ, George J, Panel IC. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. https://doi.org/10.1053/j.gastro.2019.11.312>
2. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11–20.
< Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. https://doi.org/10.1038/nrgastro.2017.109>
3. Hepatology 2016; 64(1): 73–84.
< ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease – Meta-analytic assessment of prevalence, incidence, and outcomes. https://doi.org/10.1002/hep.28431>
4. Middle East J Dig Dis 2018; 10(4): 213–9.
< F, Hosseini N, Mojarrad M. Role of MicroRNAs in Pathophysiology of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. https://doi.org/10.15171/mejdd.2018.113>
<PubMed>
5. PLoS One 2017; 12(12): e0189965.
< W, Gjuka D, Stevenson HL, et al. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. https://doi.org/10.1371/journal.pone.0189965>
<PubMed>
6. J Mol Biol 2013; 425(19): 3582–600.
< AM, Sharp PA. The role of miRNAs in regulating gene expression networks. https://doi.org/10.1016/j.jmb.2013.03.007>
<PubMed>
7. Nat Rev Genet 2011; 12(12): 861–74.
< M. Non-coding RNAs in human disease. https://doi.org/10.1038/nrg3074>
8. Cell 2004; 116(2): 281–97.
< DP. MicroRNAs: genomics, biogenesis, mechanism, and function. https://doi.org/10.1016/S0092-8674(04)00045-5>
9. J Clin Med 2015; 4(12): 1977–88.
< G. MicroRNAs in Nonalcoholic Fatty Liver Disease. https://doi.org/10.3390/jcm4121953>
<PubMed>
10. Development 2005; 132(21): 4653–62.
< I, Miska EA. MicroRNA functions in animal development and human disease. https://doi.org/10.1242/dev.02073>
11. Nucleic Acids Res 2011; 39(16): 6845–53.
< DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. https://doi.org/10.1093/nar/gkr330>
<PubMed>
12. J Genet Genomics 2013; 40(4): 143–52.
< L, Qu L. The function of microRNAs in renal development and pathophysiology. https://doi.org/10.1016/j.jgg.2013.03.002>
13. Int J Obes (Lond) 2016; 40(1): 88–101.
< JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. https://doi.org/10.1038/ijo.2015.170>
<PubMed>
14. Obes Rev 2010; 11(5): 354–61.
< HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. https://doi.org/10.1111/j.1467-789X.2009.00659.x>
15. Eur J Gastroenterol Hepatol 2017; 29(4): 441–7.
< A, Ozturk K, Demirci H, et al. The association of nonalcoholic fatty liver disease with genetic polymorphisms: a multicenter study. https://doi.org/10.1097/MEG.0000000000000813>
16. Mol Cell Endocrinol 2015; 418(Pt 1): 55–65.
< M, Jornayvaz FR. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? https://doi.org/10.1016/j.mce.2015.02.018>
17. Gastroenterology 2016; 151(3): 513–25.e0.
< A, Itzel T, Erhart W, et al. Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients. https://doi.org/10.1053/j.gastro.2016.05.051>
18. BMC Med 2011; 9: 48.
< E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. https://doi.org/10.1186/1741-7015-9-48>
<PubMed>
19. Hepatology 2012; 55(6): 2005–23.
< N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. https://doi.org/10.1002/hep.25762>
20. J Hepatol 2013; 59(4): 859–71.
< F, Pais R, Bellentani S, et al. From NAFLD in clinical practice to answers from guidelines. https://doi.org/10.1016/j.jhep.2013.05.044>
21. Lancet Diabetes Endocrinol 2014; 2(11): 901–10.
< H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. https://doi.org/10.1016/S2213-8587(14)70032-4>
22. J Hepatol 2019; 71(4): 793–801.
< ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. https://doi.org/10.1016/j.jhep.2019.06.021>
23. JAMA 2015; 313(22): 2263–73.
< ME. Nonalcoholic fatty liver disease: a systematic review. https://doi.org/10.1001/jama.2015.5370>
24. Gastroenterology 2015; 148(3): 547–55.
< RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. https://doi.org/10.1053/j.gastro.2014.11.039>
25. J Gastroenterol Hepatol 2013; 28(8): 1410–5.
< H, Estep M, Birerdinc A, et al. Expression of genes for microRNA- processing enzymes is altered in advanced non-alcoholic fatty liver disease. https://doi.org/10.1111/jgh.12268>
26. PLoS One 2009; 4(3): e4699.
< N, Berthold S, Kovacs P, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. https://doi.org/10.1371/journal.pone.0004699>
<PubMed>
27. Int J Obes (Lond) 2014; 38(3): 371–8.
< GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. https://doi.org/10.1038/ijo.2013.152>
<PubMed>
28. J Proteome Res 2012; 11(6): 3358–69.
< V, Nardelli C, Ferrigno M, et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. https://doi.org/10.1021/pr300152z>
29. J Proteome Res 2009; 8(4): 1682–93.
< R, Ortega-Delgado FJ, García-Santos E, et al. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. https://doi.org/10.1021/pr800942k>
30. J Clin Endocrinol Metab 2004; 89(6): 2548–56.
< EE, Flier JS. Adipose tissue as an endocrine organ. https://doi.org/10.1210/jc.2004-0395>
31. Metabolism 2013; 62(4): 457–78.
< K, Mintziori G, Kaprara A, Tarlatzis BC, Goulis DG. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. https://doi.org/10.1016/j.metabol.2012.08.012>
32. J Clin Gastroenterol 2006; 40(8): 745–52.
< CH, Huang MH, Yang JC, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults. https://doi.org/10.1097/00004836-200609000-00016>
33. Hepatology 2010; 51(5): 1593–602.
< K, Mukherjee PS, Ghosh A, et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. https://doi.org/10.1002/hep.23567>
34. Korean J Radiol 2018; 19(5): 923–9.
< AH, Duan-Mu YY, Zhang Y, et al. Correlation between Non-Alcoholic Fatty Liver Disease and Visceral Adipose Tissue in Non-Obese Chinese Adults: A CT Evaluation. https://doi.org/10.3348/kjr.2018.19.5.923>
<PubMed>
35. Biochem Biophys Res Commun 2006; 341(2): 549–56.
< B, Lam KS, Wang Y, et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. https://doi.org/10.1016/j.bbrc.2006.01.004>
36. J Clin Invest 2006; 116(1): 33–5.
< JG, Olefsky JM. Inflamed fat: what starts the fire? https://doi.org/10.1172/JCI27280>
<PubMed>
37. Int J Obes (Lond) 2005; 29(1): 146–50.
< T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. https://doi.org/10.1038/sj.ijo.0802839>
38. J Clin Invest 2006; 116(1): 115–24.
< SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. https://doi.org/10.1172/JCI24335>
<PubMed>
39. Dig Liver Dis 2010; 42(5): 320–30.
< E, Bugianesi E, Kotronen A, et al. From the metabolic syndrome to NAFLD or vice versa? https://doi.org/10.1016/j.dld.2010.01.016>
40. Curr Diab Rep 2005; 5(1): 70–5.
< YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. https://doi.org/10.1007/s11892-005-0071-7>
41. Obes Surg 2009; 19(5): 617–24.
< JM, Baranova A, Hossain N, et al. Expression of cytokine signaling genes in morbidly obese patients with non-alcoholic steatohepatitis and hepatic fibrosis. https://doi.org/10.1007/s11695-009-9814-x>
42. Annu Rev Pathol 2010; 5: 145–71.
< DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. https://doi.org/10.1146/annurev-pathol-121808-102132>
43. J Clin Invest 2003; 112(1): 91–100.
< A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. https://doi.org/10.1172/JCI200317797>
44. J Lipid Res 2004; 45(1): 148–54.
< K, Arner P, Flores-Morales A, Tollet-Egnell P, Norstedt G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women. https://doi.org/10.1194/jlr.M300256-JLR200>
45. Pflugers Arch 2007; 453(6): 851–61.
< EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J. Intra- and interindividual variation in gene expression in human adipose tissue. https://doi.org/10.1007/s00424-006-0164-4>
46. Metabolism 2018; 85: 183–91.
< T, Zhao X, Steer CJ, Yan G, Song G. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet. https://doi.org/10.1016/j.metabol.2018.03.023>
<PubMed>
47. Obes Rev 2010; 11(1): 11–8.
< MM. Subcutaneous and visceral adipose tissue: structural and functional differences. https://doi.org/10.1111/j.1467-789X.2009.00623.x>
48. Nat Rev Endocrinol 2015; 11(5): 276–88.
< P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity. https://doi.org/10.1038/nrendo.2015.25>
49. Aliment Pharmacol Ther 2010; 32(3): 487–97.
< M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. https://doi.org/10.1111/j.1365-2036.2010.04366.x>
50. World J Hepatol 2014; 6(8): 613–20.
< M, Baskol M, Taheri S, et al. Circulating microRNAs in patients with non-alcoholic fatty liver disease. https://doi.org/10.4254/wjh.v6.i8.613>
<PubMed>
51. Hepatology 2008; 48(6): 1810–20.
< O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. https://doi.org/10.1002/hep.22569>
<PubMed>
52. PLoS One 2012; 7(4): e34872.
< DV, Zaravinos A, Ziros PG, et al. Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. https://doi.org/10.1371/journal.pone.0034872>
<PubMed>
53. Int J Obes (Lond) 2017; 41(4): 620–30.
< J, Moreno-Navarrete JM, Mercader JM, et al. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. https://doi.org/10.1038/ijo.2017.21>
54. Mol Cell Biochem 2011; 351(1–2): 197–205.
< M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. https://doi.org/10.1007/s11010-011-0727-3>
55. Mayo Clin Proc 2015; 90(9): 1233–46.
< EK, Loomba R. Recommendations for Diagnosis, Referral for Liver Biopsy, and Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. https://doi.org/10.1016/j.mayocp.2015.06.013>
<PubMed>
56. Int J Mol Sci 2018; 19(12): 3966.
< P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. https://doi.org/10.3390/ijms19123966>
<PubMed>
57. Gut. 2015; 64(5): 800–12.
< CJ, Fernández Gianotti T, Castaño GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. https://doi.org/10.1136/gutjnl-2014-306996>
<PubMed>
58. Int J Mol Sci 2014; 15(10): 17644–66.
< LS, Enache EL, Ramière C, et al. Circulating RNA molecules as biomarkers in liver disease. https://doi.org/10.3390/ijms151017644>
<PubMed>
59. BMC Genomics 2012; 13: 357.
< J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. https://doi.org/10.1186/1471-2164-13-357>
<PubMed>
60. Expert Opin Ther Targets 2011; 15(5): 623–36.
< R, Lodish H, Sun L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. https://doi.org/10.1517/14728222.2011.561317>
<PubMed>
61. Nature 2004; 432(7014): 226–30.
< MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. https://doi.org/10.1038/nature03076>
62. Stem Cells 2008; 26(1): 17–29.
< YM, Tam WL, Ang YS, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. https://doi.org/10.1634/stemcells.2007-0295>
63. J Biol Chem 2004; 279(50): 52361–5.
< C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. https://doi.org/10.1074/jbc.C400438200>
64. PLoS One 2011; 6(6): e21305.
< L, Virtue S, Campbell M, et al. Genome-wide profiling of microRNAs in adipose mesenchymal stem cell differentiation and mouse models of obesity. https://doi.org/10.1371/journal.pone.0021305>
<PubMed>
65. J Cell Physiol 2012; 227(1): 183–93.
< YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. https://doi.org/10.1002/jcp.22716>
66. Biol Chem 2015; 396(3): 235–44.
< M, Liu Z, Zhang Z, Liu G, Sun S, Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. https://doi.org/10.1515/hsz-2014-0241>
67. Pediatr Obes 2016; 11(3): 228–34.
< U, Buyukinan M, Yerlikaya FH. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. https://doi.org/10.1111/ijpo.12050>
68. Clin Exp Pharmacol Physiol 2009; 36(9): e32–9.
< HY, Ou HS, Feng SD, et al. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. https://doi.org/10.1111/j.1440-1681.2009.05207.x>
69. FEBS J 2009; 276(8): 2348–58.
< Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. https://doi.org/10.1111/j.1742-4658.2009.06967.x>
<PubMed>
70. Nutr J 2014; 13: 17.
< B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications – a review. https://doi.org/10.1186/1475-2891-13-17>
<PubMed>
71. J Hepatol 2015; 62(3): 720–33.
< M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. https://doi.org/10.1016/j.jhep.2014.10.039>
72. J Endocrinol 2010; 204(2): 93–104.
< MC, Caton PW, Holness MJ. PPAR control: it’s SIRTainly as easy as PGC. https://doi.org/10.1677/JOE-09-0359>
73. J Gastroenterol Hepatol 2018; 33(2): 524–32.
< X, Liu H. Honokiol attenuates diet-induced non-alcoholic steatohepatitis by regulating macrophage polarization through activating peroxisome proliferator-activated receptor γ. https://doi.org/10.1111/jgh.13853>
74. Diabetes 2009; 58(5): 1050–7.
< H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. https://doi.org/10.2337/db08-1299>
<PubMed>
75. Mol Cell Biol 2016; 36(7): 1180–93.
< NL, Holtrup B, Kwei SL, et al. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. https://doi.org/10.1128/MCB.00745-15>
<PubMed>
76. EMBO Mol Med 2013; 5(10): 1602–12.
< J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. https://doi.org/10.1002/emmm.201302647>
<PubMed>
77. Gut 2010; 59(7): 969–74.
< VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. https://doi.org/10.1136/gut.2009.205088>
78. Int J Mol Sci 2013; 14(11): 21833–57.
< K, Yoneda M, Kessoku T, et al. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. https://doi.org/10.3390/ijms141121833>
<PubMed>