Acta Med. 2020, 63: 101-112
https://doi.org/10.14712/18059694.2020.27
Association of XPC Polymorphisms with Cutaneous Malignant Melanoma Risk: Evidence from a Meta-Analysis
References
1. M, Buljan M, Kolić M, Vučić M. Melanoma-clinical, dermatoscopical, and histopathological morphological characteristics. Acta Dermatovenerologica Croatica: ADC 2014; 22: 1–12.
2. E, Torres SM. A new understanding in the epidemiology of melanoma. Expert Review of Anticancer Therapy 2010; 10: 1811–23.
<https://doi.org/10.1586/era.10.170>
<PubMed>
3. S, Han J, Song F, et al. Caffeine Intake, Coffee Consumption, and Risk of Cutaneous Malignant Melanoma. Epidemiology 2015; 26: 898–908.
<https://doi.org/10.1097/EDE.0000000000000360>
<PubMed>
4. R, Roldán-Marín R, Martínez-Said H, Adams DJ, Robles-Espinoza CD. Melanoma: a global perspective. Nature Reviews Cancer 2017; 17: 393–4.
<https://doi.org/10.1038/nrc.2017.43>
5. G. On the clinical significance of cutaneous melanoma’s precursors. Indian Dermatology Online Journal 2012; 3: 83–8.
<https://doi.org/10.4103/2229-5178.96690>
<PubMed>
6. M, Colombino M, Satta MP, et al. Factors predicting the occurrence of germline mutations in candidate genes among patients with cutaneous malignant melanoma from South Italy. European Journal of Cancer 2007; 43: 137–43.
<https://doi.org/10.1016/j.ejca.2006.07.017>
7. DE, Subramanian M, Merrill SJ. Cutaneous malignant melanoma incidences analyzed worldwide by sex, age, and skin type over personal Ultraviolet-B dose shows no role for sunburn but implies one for Vitamin D3. Dermato-endocrinology 2017; 9: e1267077.
<https://doi.org/10.1080/19381980.2016.1267077>
<PubMed>
8. SM, Latifi SM, Moghimi M, et al. Association of vitamin D receptor gene polymorphisms with risk of cutaneous melanoma. A meta-analysis based on 40 case-control studies. Dermatology Review/Przegląd Dermatologiczny 2019; 106: 268–79.
9. D, Laspe P, Emmert S. Nucleotide excision repair and cancer. Journal of Molecular Histology 2006; 37: 225–38.
<https://doi.org/10.1007/s10735-006-9041-x>
10. K, Scott RJ, Serrano-Fernandez P, et al. Xeroderma pigmentosum genes and melanoma risk. International Journal of Cancer 2013; 133: 1094–100.
<https://doi.org/10.1002/ijc.28123>
11. C, Hu Z, Liu Z, et al. Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2006; 15: 2526–32.
<https://doi.org/10.1158/1055-9965.EPI-06-0672>
12. MR, Yazdi MF, Mazaheri M, Shehneh MZ, Neamatzadeh H. Association between the DNA repair gene XRCC3 rs861539 polymorphism and risk of osteosarcoma: A systematic review and meta-analysis. Asian Pacific Journal of Cancer Prevention 2017; 18.
13. Y, Iwai S, Hanaoka F, and Sugasawa K. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. The EMBO Journal 2003; 22: 164–73.
<https://doi.org/10.1093/emboj/cdg016>
<PubMed>
14. T, Murakami K, Tada H, et al. Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. Genes to Cells 2017; 22: 392–405.
<https://doi.org/10.1111/gtc.12481>
15. JJ, Kraemer KH. Shining a Light on Xeroderma Pigmentosum. Journal of Investigative Dermatology 2012; 132: 785–96.
<https://doi.org/10.1038/jid.2011.426>
<PubMed>
16. R-X, Zhu J, Jiang D-H, et al. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes 2016; 7: 73.
<https://doi.org/10.3390/genes7100073>
<PubMed>
17. J, Shi T-Y, Zhu M-L, Wang M-Y, Li Q-X,Wei Q-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. International Journal of Cancer 2013; 133: 1765–75.
<https://doi.org/10.1002/ijc.28089>
18. H, Lv Z, Wang X, Zhang L, Mo N. Lack of association between XPC Lys939Gln polymorphism and prostate cancer risk: an updated meta-analysis based on 3039 cases and 3253 controls. International journal of clinical and experimental medicine 2015; 8: 17959–67.
19. G, Wang J, Dong J, Liu J. XPC Ala499Val and XPG Asp1104His polymorphisms and digestive system cancer risk: a meta-analysis based on model-free approach. International Journal of Clinical and Experimental Medicine 2015; 8: 6621–30.
20. Y, Li Z, Zhong Q, et al. Polymorphisms of the XPC gene may contribute to the risk of head and neck cancer: a meta-analysis. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 2014; 35: 3917–31.
<https://doi.org/10.1007/s13277-013-1520-6>
21. S, König IR, Moessner R, et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case–control study. Carcinogenesis 2005; 26: 1085–90.
<https://doi.org/10.1093/carcin/bgi055>
22. C, Hu Z, Liu Z, et al. Polymorphisms in the DNA Repair Genes XPC, XPD, and XPG and Risk of Cutaneous Melanoma: a Case-Control Analysis. Cancer Epidemiology Biomarkers & Prevention 2006; 15: 2526–32.
<https://doi.org/10.1158/1055-9965.EPI-06-0672>
23. RC, Hummer A, Begg C, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis 2006; 27: 610–8.
<https://doi.org/10.1093/carcin/bgi252>
24. A, Scherer D, Nagore E, et al. Single-nucleotide polymorphisms in DNA-repair genes and cutaneous melanoma. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2010; 702: 8–16.
<https://doi.org/10.1016/j.mrgentox.2010.06.011>
25. FT, Francisco G, de Souza SP, et al. European ancestry and polymorphisms in DNA repair genes modify the risk of melanoma: A case–control study in a high UV index region in Brazil. Journal of Dermatological Science 2011; 64: 59–66.
<https://doi.org/10.1016/j.jdermsci.2011.06.003>
26. M, Peña-Chilet M, Fernandez LP, et al. Genetic polymorphisms in DNA repair and oxidative stress pathways associated with malignant melanoma susceptibility. European Journal of Cancer 2011; 47: 2618–25.
<https://doi.org/10.1016/j.ejca.2011.05.011>
27. C, Rinck-Junior JA, Lourenço GJ, Moraes AM, Lima CSP. Assessment of the XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro) and GSTP1 (Ile105Val) polymorphisms in the risk of cutaneous melanoma. Journal of Cancer Research and Clinical Oncology 2013; 139: 1199–206.
<https://doi.org/10.1007/s00432-013-1430-4>
<PubMed>
28. SM, Luo L, Lilyquist J, et al. DNA repair variants, indoor tanning, and risk of melanoma. Pigment Cell & Melanoma Research 2013; 26: 677–84.
<https://doi.org/10.1111/pcmr.12117>
<PubMed>
29. L, Lu Y, Yang G, Wu J. Quantitative assessment of the association between XPC Lys939Gln polymorphism and cutaneous melanoma risk. Tumor Biology 2014; 35: 1427–32.
<https://doi.org/10.1007/s13277-013-1196-y>
30. W, Zhang H, Chen QW, Xie S. A meta-analysis of XPC Lys939Gln polymorphism and melanoma susceptibility. Journal of the European Academy of Dermatology and Venereology 2016; 30: 1327–31.
<https://doi.org/10.1111/jdv.13477>
31. X, Liu D, Wu H, et al. Association of XPC polymorphisms with susceptibility and clinical outcome to chemotherapy in breast cancer patients. Cancer Science 2012; 103: 1207–14.
<https://doi.org/10.1111/j.1349-7006.2012.02312.x>
<PubMed>
32. Q, Chen Z, Lu Y, et al. Current evidences on XPC polymorphisms and gastric cancer susceptibility: a meta-analysis. Diagnostic Pathology 2014; 9: 96.
<https://doi.org/10.1186/1746-1596-9-96>
<PubMed>
33. Y, Li Z, Liu N, and Zhang G. Association between CCND1 and XPC polymorphisms and bladder cancer risk: a meta-analysis based on 15 case–control studies. Tumor Biology 2014; 35: 3155–65.
<https://doi.org/10.1007/s13277-013-1412-9>
34. M, Sankhwar SN, Bansal SK, Gupta G, Rajender S. Polymorphisms in the XPC gene affect urinary bladder cancer risk: a case-control study, meta-analyses and trial sequential analyses. Scientific Reports 2016; 6: 27018.
<https://doi.org/10.1038/srep27018>
<PubMed>
35. K, Sobhan MR, Mehdinezhad-Yazdi M, et al. Association of GDF-5 rs143383 polymorphism with radiographic defined knee osteoarthritis: A systematic review and meta-analysis. Journal of Orthopaedics 2018; 15: 945–51.
<https://doi.org/10.1016/j.jor.2018.08.033>
<PubMed>
36. M, Kargar S, Jafari MA, et al. Angiotensin Converting Enzyme Insertion/Deletion Polymorphism is Associated with Breast Cancer Risk: A Meta-Analysis. Asian Pac J Cancer Prev 2018; 19: 3225–31.
<https://doi.org/10.31557/APJCP.2018.19.11.3225>
<PubMed>
37. A, Abedinzadeh M, Nourbaksh P, Neamatzadeh H. Association between the XRCC3 Thr241Met polymorphism and risk of colorectal cancer: A meta analysis of 5,193 cases and 6,645 controls. Asian Pac J Cancer Prev 2015; 16: 2263–8.
<https://doi.org/10.7314/APJCP.2015.16.6.2263>
38. A, Forat-Yazdi M, Jafari M, et al. Association of interleukin-10 -1082 A/G (rs1800896) polymorphism with susceptibility to gastric cancer: meta-analysis of 6,101 cases and 8,557 controls. Arq Gastroenterol 2018; 55: 33–40.
<https://doi.org/10.1590/s0004-2803.201800000-18>
39. J, Moghimi M, Zare M, et al. Association of Promoter Region Polymorphisms of IL-10 Gene with Susceptibility to Lung Cancer: Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2019; 20: 1951–7.
<https://doi.org/10.31557/APJCP.2019.20.7.1951>
<PubMed>
40. M, Sobhan MR, Jarahzadeh MH, et al. Association of GSTM1, GSTT1, GSTM3, and GSTP1 Genes Polymorphisms with Susceptibility to Osteosarcoma: a Case-Control Study and Meta-Analysis. Asian Pac J Cancer Prev 2019; 20: 675–82.
<https://doi.org/10.31557/APJCP.2019.20.3.675>
<PubMed>
41. MF, Rafieian S, Gholi-Nataj M, Sheikhha MH, Nazari T, Neamatzadeh H. CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients. Asian Asian Pac J Cancer Prev 2015; 16: 6783–7.
<https://doi.org/10.7314/APJCP.2015.16.15.6783>


