Acta Med. 2020, 63: 101-112
https://doi.org/10.14712/18059694.2020.27
Association of XPC Polymorphisms with Cutaneous Malignant Melanoma Risk: Evidence from a Meta-Analysis
References
1. Acta Dermatovenerologica Croatica: ADC 2014; 22: 1–12.
M, Buljan M, Kolić M, Vučić M. Melanoma-clinical, dermatoscopical, and histopathological morphological characteristics.
2. Expert Review of Anticancer Therapy 2010; 10: 1811–23.
< E, Torres SM. A new understanding in the epidemiology of melanoma. https://doi.org/10.1586/era.10.170>
<PubMed>
3. Epidemiology 2015; 26: 898–908.
< S, Han J, Song F, et al. Caffeine Intake, Coffee Consumption, and Risk of Cutaneous Malignant Melanoma. https://doi.org/10.1097/EDE.0000000000000360>
<PubMed>
4. Nature Reviews Cancer 2017; 17: 393–4.
< R, Roldán-Marín R, Martínez-Said H, Adams DJ, Robles-Espinoza CD. Melanoma: a global perspective. https://doi.org/10.1038/nrc.2017.43>
5. Indian Dermatology Online Journal 2012; 3: 83–8.
< G. On the clinical significance of cutaneous melanoma’s precursors. https://doi.org/10.4103/2229-5178.96690>
<PubMed>
6. European Journal of Cancer 2007; 43: 137–43.
< M, Colombino M, Satta MP, et al. Factors predicting the occurrence of germline mutations in candidate genes among patients with cutaneous malignant melanoma from South Italy. https://doi.org/10.1016/j.ejca.2006.07.017>
7. Dermato-endocrinology 2017; 9: e1267077.
< DE, Subramanian M, Merrill SJ. Cutaneous malignant melanoma incidences analyzed worldwide by sex, age, and skin type over personal Ultraviolet-B dose shows no role for sunburn but implies one for Vitamin D3. https://doi.org/10.1080/19381980.2016.1267077>
<PubMed>
8. Dermatology Review/Przegląd Dermatologiczny 2019; 106: 268–79.
SM, Latifi SM, Moghimi M, et al. Association of vitamin D receptor gene polymorphisms with risk of cutaneous melanoma. A meta-analysis based on 40 case-control studies.
9. Journal of Molecular Histology 2006; 37: 225–38.
< D, Laspe P, Emmert S. Nucleotide excision repair and cancer. https://doi.org/10.1007/s10735-006-9041-x>
10. International Journal of Cancer 2013; 133: 1094–100.
< K, Scott RJ, Serrano-Fernandez P, et al. Xeroderma pigmentosum genes and melanoma risk. https://doi.org/10.1002/ijc.28123>
11. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2006; 15: 2526–32.
< C, Hu Z, Liu Z, et al. Polymorphisms in the DNA repair genes XPC, XPD, and XPG and risk of cutaneous melanoma: a case-control analysis. https://doi.org/10.1158/1055-9965.EPI-06-0672>
12. Asian Pacific Journal of Cancer Prevention 2017; 18.
MR, Yazdi MF, Mazaheri M, Shehneh MZ, Neamatzadeh H. Association between the DNA repair gene XRCC3 rs861539 polymorphism and risk of osteosarcoma: A systematic review and meta-analysis.
13. The EMBO Journal 2003; 22: 164–73.
< Y, Iwai S, Hanaoka F, and Sugasawa K. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. https://doi.org/10.1093/emboj/cdg016>
<PubMed>
14. Genes to Cells 2017; 22: 392–405.
< T, Murakami K, Tada H, et al. Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. https://doi.org/10.1111/gtc.12481>
15. Journal of Investigative Dermatology 2012; 132: 785–96.
< JJ, Kraemer KH. Shining a Light on Xeroderma Pigmentosum. https://doi.org/10.1038/jid.2011.426>
<PubMed>
16. Genes 2016; 7: 73.
< R-X, Zhu J, Jiang D-H, et al. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. https://doi.org/10.3390/genes7100073>
<PubMed>
17. International Journal of Cancer 2013; 133: 1765–75.
< J, Shi T-Y, Zhu M-L, Wang M-Y, Li Q-X,Wei Q-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. https://doi.org/10.1002/ijc.28089>
18. International journal of clinical and experimental medicine 2015; 8: 17959–67.
H, Lv Z, Wang X, Zhang L, Mo N. Lack of association between XPC Lys939Gln polymorphism and prostate cancer risk: an updated meta-analysis based on 3039 cases and 3253 controls.
19. International Journal of Clinical and Experimental Medicine 2015; 8: 6621–30.
G, Wang J, Dong J, Liu J. XPC Ala499Val and XPG Asp1104His polymorphisms and digestive system cancer risk: a meta-analysis based on model-free approach.
20. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 2014; 35: 3917–31.
< Y, Li Z, Zhong Q, et al. Polymorphisms of the XPC gene may contribute to the risk of head and neck cancer: a meta-analysis. https://doi.org/10.1007/s13277-013-1520-6>
21. Carcinogenesis 2005; 26: 1085–90.
< S, König IR, Moessner R, et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma: a case–control study. https://doi.org/10.1093/carcin/bgi055>
22. Cancer Epidemiology Biomarkers & Prevention 2006; 15: 2526–32.
< C, Hu Z, Liu Z, et al. Polymorphisms in the DNA Repair Genes XPC, XPD, and XPG and Risk of Cutaneous Melanoma: a Case-Control Analysis. https://doi.org/10.1158/1055-9965.EPI-06-0672>
23. Carcinogenesis 2006; 27: 610–8.
< RC, Hummer A, Begg C, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. https://doi.org/10.1093/carcin/bgi252>
24. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2010; 702: 8–16.
< A, Scherer D, Nagore E, et al. Single-nucleotide polymorphisms in DNA-repair genes and cutaneous melanoma. https://doi.org/10.1016/j.mrgentox.2010.06.011>
25. Journal of Dermatological Science 2011; 64: 59–66.
< FT, Francisco G, de Souza SP, et al. European ancestry and polymorphisms in DNA repair genes modify the risk of melanoma: A case–control study in a high UV index region in Brazil. https://doi.org/10.1016/j.jdermsci.2011.06.003>
26. European Journal of Cancer 2011; 47: 2618–25.
< M, Peña-Chilet M, Fernandez LP, et al. Genetic polymorphisms in DNA repair and oxidative stress pathways associated with malignant melanoma susceptibility. https://doi.org/10.1016/j.ejca.2011.05.011>
27. Journal of Cancer Research and Clinical Oncology 2013; 139: 1199–206.
< C, Rinck-Junior JA, Lourenço GJ, Moraes AM, Lima CSP. Assessment of the XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro) and GSTP1 (Ile105Val) polymorphisms in the risk of cutaneous melanoma. https://doi.org/10.1007/s00432-013-1430-4>
28. Pigment Cell & Melanoma Research 2013; 26: 677–84.
< SM, Luo L, Lilyquist J, et al. DNA repair variants, indoor tanning, and risk of melanoma. https://doi.org/10.1111/pcmr.12117>
<PubMed>
29. Tumor Biology 2014; 35: 1427–32.
< L, Lu Y, Yang G, Wu J. Quantitative assessment of the association between XPC Lys939Gln polymorphism and cutaneous melanoma risk. https://doi.org/10.1007/s13277-013-1196-y>
30. Journal of the European Academy of Dermatology and Venereology 2016; 30: 1327–31.
< W, Zhang H, Chen QW, Xie S. A meta-analysis of XPC Lys939Gln polymorphism and melanoma susceptibility. https://doi.org/10.1111/jdv.13477>
31. Cancer Science 2012; 103: 1207–14.
< X, Liu D, Wu H, et al. Association of XPC polymorphisms with susceptibility and clinical outcome to chemotherapy in breast cancer patients. https://doi.org/10.1111/j.1349-7006.2012.02312.x>
<PubMed>
32. Diagnostic Pathology 2014; 9: 96.
< Q, Chen Z, Lu Y, et al. Current evidences on XPC polymorphisms and gastric cancer susceptibility: a meta-analysis. https://doi.org/10.1186/1746-1596-9-96>
<PubMed>
33. Tumor Biology 2014; 35: 3155–65.
< Y, Li Z, Liu N, and Zhang G. Association between CCND1 and XPC polymorphisms and bladder cancer risk: a meta-analysis based on 15 case–control studies. https://doi.org/10.1007/s13277-013-1412-9>
34. Scientific Reports 2016; 6: 27018.
< M, Sankhwar SN, Bansal SK, Gupta G, Rajender S. Polymorphisms in the XPC gene affect urinary bladder cancer risk: a case-control study, meta-analyses and trial sequential analyses. https://doi.org/10.1038/srep27018>
<PubMed>
35. Journal of Orthopaedics 2018; 15: 945–51.
< K, Sobhan MR, Mehdinezhad-Yazdi M, et al. Association of GDF-5 rs143383 polymorphism with radiographic defined knee osteoarthritis: A systematic review and meta-analysis. https://doi.org/10.1016/j.jor.2018.08.033>
<PubMed>
36. Asian Pac J Cancer Prev 2018; 19: 3225–31.
< M, Kargar S, Jafari MA, et al. Angiotensin Converting Enzyme Insertion/Deletion Polymorphism is Associated with Breast Cancer Risk: A Meta-Analysis. https://doi.org/10.31557/APJCP.2018.19.11.3225>
<PubMed>
37. Asian Pac J Cancer Prev 2015; 16: 2263–8.
< A, Abedinzadeh M, Nourbaksh P, Neamatzadeh H. Association between the XRCC3 Thr241Met polymorphism and risk of colorectal cancer: A meta analysis of 5,193 cases and 6,645 controls. https://doi.org/10.7314/APJCP.2015.16.6.2263>
38. Arq Gastroenterol 2018; 55: 33–40.
< A, Forat-Yazdi M, Jafari M, et al. Association of interleukin-10 -1082 A/G (rs1800896) polymorphism with susceptibility to gastric cancer: meta-analysis of 6,101 cases and 8,557 controls. https://doi.org/10.1590/s0004-2803.201800000-18>
39. Asian Pac J Cancer Prev 2019; 20: 1951–7.
< J, Moghimi M, Zare M, et al. Association of Promoter Region Polymorphisms of IL-10 Gene with Susceptibility to Lung Cancer: Systematic Review and Meta-Analysis. https://doi.org/10.31557/APJCP.2019.20.7.1951>
<PubMed>
40. Asian Pac J Cancer Prev 2019; 20: 675–82.
< M, Sobhan MR, Jarahzadeh MH, et al. Association of GSTM1, GSTT1, GSTM3, and GSTP1 Genes Polymorphisms with Susceptibility to Osteosarcoma: a Case-Control Study and Meta-Analysis. https://doi.org/10.31557/APJCP.2019.20.3.675>
<PubMed>
41. Asian Asian Pac J Cancer Prev 2015; 16: 6783–7.
< MF, Rafieian S, Gholi-Nataj M, Sheikhha MH, Nazari T, Neamatzadeh H. CYP2D6 Genotype and Risk of Recurrence in Tamoxifen Treated Breast Cancer Patients. https://doi.org/10.7314/APJCP.2015.16.15.6783>