Acta Med. 2020, 63: 18-24
https://doi.org/10.14712/18059694.2020.11
Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation
References
1. Immune Netw 2017; 17(1): 25–40.
< DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. https://doi.org/10.4110/in.2017.17.1.25>
<PubMed>
2. World J Gastrointest Pathophysiol 2013; 4(3): 63–4.
< X. Why is damage limited to the mucosa in ulcerative colitis but transmural in Crohn’s disease? https://doi.org/10.4291/wjgp.v4.i3.63>
<PubMed>
3. Swiss Med Wkly 2018; 148: w14671.
M, Scharl M. Genetics and epigenetics of inflammatory bowel disease.
4. Hum Vaccin Immunother 2019; 15(10): 2482–90.
< R, Dulai PS, Jairath V, Vande Casteele N. A product review of vedolizumab in inflammatory bowel disease. https://doi.org/10.1080/21645515.2019.1591139>
<PubMed>
5. J Crohns Colitis 2017; 11(1): 3–25.
< F, Dignass A, Annesse V, et al. ECCO: Third European evidence-based consensus on the diagnosis and management of Crohn’s Disease 2016: Part 1: Diagnosis and medical management. https://doi.org/10.1093/ecco-jcc/jjw168>
6. J Crohns Colitis. 2017; 11(7): 769–84.
< M, Eliakim R, Bettenworth D, et al. ECCO. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. https://doi.org/10.1093/ecco-jcc/jjx009>
7. Korean J Intern Med 2018; 33(1): 20–7.
< HS, Park SK, Park DI. Novel treatments for inflammatory bowel disease. https://doi.org/10.3904/kjim.2017.393>
<PubMed>
8. Immunopharmacol Immunotoxicol 2018; 40(6): 446–60.
< CL, Bendix M, Dige A, Dahlerup JF, Agnholt J. Current, experimental, and future treatments in inflammatory bowel disease: a clinical review. https://doi.org/10.1080/08923973.2018.1469144>
9. Chudy-Onwugaje KO, Christian KE, Farraye FA, Cross RK. A state-ofthe- art review of new and emerging therapies for the treatment of IBD. Inflamm Bowel Dis 2018.
10. Oxid Med Cell Longev 2017; 2017: 4535194.
T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies.
11. Br J Pharmacol 2017; 174(12): 1704–18.
< G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? https://doi.org/10.1111/bph.13428>
<PubMed>
12. Biomed Res Int 2018; 2018: 1290179.
< G, Lan S. Implications of antioxidant systems in inflammatory bowel disease. https://doi.org/10.1155/2018/1290179>
<PubMed>
13. Redox Biol 6: 617–39.
< FA, de Andrade KQ, Dos Santos JCF, Araújo ORP, Goulart MOF. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? https://doi.org/10.1016/j.redox.2015.10.006>
<PubMed>
14. Oxid Med Cell Longev 2018; 2018: 6231482.
< MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: A focus on vascular oxidative stress. https://doi.org/10.1155/2018/6231482>
<PubMed>
15. Newkirk GM, Wu H, Santana I, Giraldo JP. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. J Vis Exp 2018; (138).
16. Nanoscale Res Lett 2018; 13(1): 100.
< K, Yefimova S, Tkacheva T, et al. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue. https://doi.org/10.1186/s11671-018-2514-5>
<PubMed>
17. HVM Bioflux 2019; 11(1): 1–5.
AS, Onishchenko AI, Gorbach TV, Nakonechna OA, Shekhovtsova EV, Gubina-Vakulyсk GI. HSP90α overexpression in small intestinal mucosa and high blood serum levels of HSP70 and 8-isoprostane in carrageenan-induced intestinal inflammation.
18. Malay J Biochem Mol Biol 2018; 21(3): 77–80.
AS, Onishchenko AI, Gorbach TV, Gubina-Vakulyсk GI. O-6-methylguanine-DNA methyltransferase (MGMT) overexpression in small intestinal mucosa in experimental carrageenan-induced enteritis.
19. Med Glas (Zenica) 2018; 15(2): 87–92.
A, Marakushyn D, Kalashnyk I, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis.
20. Comparative Clinical Pathology 2015; 24(6): 1473–7.
< GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. https://doi.org/10.1007/s00580-015-2102-3>
21. Functional Materials 2011; 1: 111–5.
VK, Malyshenko AI, Sedyh OO, Malyukin YuV. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re = La, Gd, Y) with rod-like and spindle-like shape.
22. Lab Delo 1984; 3: 138–140 (in Russian).
NI, Lipatova VI. Experience of using index of middle molecules in blood to diagnose nephrological diseases among children.
23. Chatterjee S, Kumari RM, Nimesh S. Nanotoxicology: Evaluation of toxicity potential of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, N., Eds.; Elsevier: New York City, NY, USA, 2017; pp. 187–201.
24. Int J Nanomedicine 2018; 13: 4445–59.
< M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. https://doi.org/10.2147/IJN.S170745>
<PubMed>
25. Cell Stress Chaperones 2011; 16(4): 411–25.
< E, Usha Rani M. Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus. https://doi.org/10.1007/s12192-011-0255-9>
<PubMed>
26. Gene 2015; 570(1): 8–16.
< AD, Beebe K, Neckers L, Prince T. Regulation and function of the human HSP90AA1 gene. https://doi.org/10.1016/j.gene.2015.06.018>
<PubMed>
27. Scand J Gastroenterol 2018; 53(12): 1453–8.
< T, Kvivik I, Kvaløy JT, Aabakken L, Omdal R. Heat shock protein 90 and inflammatory activity in newly onset Crohn’s disease. https://doi.org/10.1080/00365521.2018.1533582>
28. Karpenko NO, Belkina VN, Klochkov VN et al. Study of orthovanadate nanoparticle toxicity // Achievements and Prospects of Experimental and Clinical Endocrinology (15th Danilevsky Conference), Kharkiv; 2016: 44–45 (in Ukrainian).
29. Mamotyuk EM, Klochkov VK, Grygorova GV, Yefimova SL, Malyukin YuV. Radioprotective effect of CeO2 and GdEuVO4 nanoparticles in “in vivo” experiments. Nanoscience Advances in CBRN Agents Detection, Information and Energy Security: Springer; 2015: 193–7.
30. Journal of Applied Spectroscopy 2014; 81(5): 827–33.
< EA, Kavok NS, Klochkov VK, Malyukin YuV. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2. https://doi.org/10.1007/s10812-014-0012-9>
31. Karpenko NA, Malukin YuV, Koreneva EM et al. The effects of chronic intake of cerium dioxide or gadolinium ortovanadate nanoparticles in aging male rats. Proceedings of the 3rd Int. Conf. “Nanomaterials: Applications and Properties ’2013”, September 16–21, 2013; Alushta, Ukraine; 2(4): 04NAMB28-1-04NAMB28-4.
32. J Food Sci Technol 2010; 47(6): 587–97.
< D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. https://doi.org/10.1007/s13197-010-0162-6>
<PubMed>
33. Eur J Immunol 2016; 46(4): 964–70.
< CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. https://doi.org/10.1002/eji.201545520>