Acta Med. 2020, 63: 18-24

Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation

Anton S. Tkachenkoa, Galina I. Gubina-Vakulyckb, Vladimir K. Klochkovc, Nataliya S. Kavokc, Anatolii I. Onishchenkoa, Tatyana V. Gorbacha, Oksana A. Nakonechnaa

aDepartment of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
bDepartment of Pathological Anatomy, Kharkiv National Medical University, Kharkiv, Ukraine
cInstitute for Scintillation Materials National Academy of Sciences of Ukraine, Kharkiv, Ukraine

Received June 27, 2019
Accepted January 8, 2020


1. Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw 2017; 17(1): 25–40. <> <PubMed>
2. Qin X. Why is damage limited to the mucosa in ulcerative colitis but transmural in Crohn’s disease? World J Gastrointest Pathophysiol 2013; 4(3): 63–4. <> <PubMed>
3. Wawrzyniak M, Scharl M. Genetics and epigenetics of inflammatory bowel disease. Swiss Med Wkly 2018; 148: w14671.
4. Battat R, Dulai PS, Jairath V, Vande Casteele N. A product review of vedolizumab in inflammatory bowel disease. Hum Vaccin Immunother 2019; 15(10): 2482–90. <> <PubMed>
5. Gomollón F, Dignass A, Annesse V, et al. ECCO: Third European evidence-based consensus on the diagnosis and management of Crohn’s Disease 2016: Part 1: Diagnosis and medical management. J Crohns Colitis 2017; 11(1): 3–25. <>
6. Harbord M, Eliakim R, Bettenworth D, et al. ECCO. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J Crohns Colitis. 2017; 11(7): 769–84. <>
7. Lee HS, Park SK, Park DI. Novel treatments for inflammatory bowel disease. Korean J Intern Med 2018; 33(1): 20–7. <> <PubMed>
8. Hvas CL, Bendix M, Dige A, Dahlerup JF, Agnholt J. Current, experimental, and future treatments in inflammatory bowel disease: a clinical review. Immunopharmacol Immunotoxicol 2018; 40(6): 446–60. <>
9. Chudy-Onwugaje KO, Christian KE, Farraye FA, Cross RK. A state-ofthe- art review of new and emerging therapies for the treatment of IBD. Inflamm Bowel Dis 2018.
10. Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017; 2017: 4535194.
11. Aviello G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br J Pharmacol 2017; 174(12): 1704–18. <> <PubMed>
12. Guan G, Lan S. Implications of antioxidant systems in inflammatory bowel disease. Biomed Res Int 2018; 2018: 1290179. <> <PubMed>
13. Moura FA, de Andrade KQ, Dos Santos JCF, Araújo ORP, Goulart MOF. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 6: 617–39. <> <PubMed>
14. Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid Med Cell Longev 2018; 2018: 6231482. <> <PubMed>
15. Newkirk GM, Wu H, Santana I, Giraldo JP. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. J Vis Exp 2018; (138).
16. Hubenko K, Yefimova S, Tkacheva T, et al. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue. Nanoscale Res Lett 2018; 13(1): 100. <> <PubMed>
17. Tkachenko AS, Onishchenko AI, Gorbach TV, Nakonechna OA, Shekhovtsova EV, Gubina-Vakulyсk GI. HSP90α overexpression in small intestinal mucosa and high blood serum levels of HSP70 and 8-isoprostane in carrageenan-induced intestinal inflammation. HVM Bioflux 2019; 11(1): 1–5.
18. Tkachenko AS, Onishchenko AI, Gorbach TV, Gubina-Vakulyсk GI. O-6-methylguanine-DNA methyltransferase (MGMT) overexpression in small intestinal mucosa in experimental carrageenan-induced enteritis. Malay J Biochem Mol Biol 2018; 21(3): 77–80.
19. Tkachenko A, Marakushyn D, Kalashnyk I, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica) 2018; 15(2): 87–92.
20. Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology 2015; 24(6): 1473–7. <>
21. Klochkov VK, Malyshenko AI, Sedyh OO, Malyukin YuV. Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re = La, Gd, Y) with rod-like and spindle-like shape. Functional Materials 2011; 1: 111–5.
22. Gabriyelyan NI, Lipatova VI. Experience of using index of middle molecules in blood to diagnose nephrological diseases among children. Lab Delo 1984; 3: 138–140 (in Russian).
23. Chatterjee S, Kumari RM, Nimesh S. Nanotoxicology: Evaluation of toxicity potential of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, N., Eds.; Elsevier: New York City, NY, USA, 2017; pp. 187–201.
24. Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13: 4445–59. <> <PubMed>
25. Padmini E, Usha Rani M. Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus. Cell Stress Chaperones 2011; 16(4): 411–25. <> <PubMed>
26. Zuehlke AD, Beebe K, Neckers L, Prince T. Regulation and function of the human HSP90AA1 gene. Gene 2015; 570(1): 8–16. <> <PubMed>
27. Grimstad T, Kvivik I, Kvaløy JT, Aabakken L, Omdal R. Heat shock protein 90 and inflammatory activity in newly onset Crohn’s disease. Scand J Gastroenterol 2018; 53(12): 1453–8. <>
28. Karpenko NO, Belkina VN, Klochkov VN et al. Study of orthovanadate nanoparticle toxicity // Achievements and Prospects of Experimental and Clinical Endocrinology (15th Danilevsky Conference), Kharkiv; 2016: 44–45 (in Ukrainian).
29. Mamotyuk EM, Klochkov VK, Grygorova GV, Yefimova SL, Malyukin YuV. Radioprotective effect of CeO2 and GdEuVO4 nanoparticles in “in vivo” experiments. Nanoscience Advances in CBRN Agents Detection, Information and Energy Security: Springer; 2015: 193–7.
30. Averchenko EA, Kavok NS, Klochkov VK, Malyukin YuV. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2. Journal of Applied Spectroscopy 2014; 81(5): 827–33. <>
31. Karpenko NA, Malukin YuV, Koreneva EM et al. The effects of chronic intake of cerium dioxide or gadolinium ortovanadate nanoparticles in aging male rats. Proceedings of the 3rd Int. Conf. “Nanomaterials: Applications and Properties ’2013”, September 16–21, 2013; Alushta, Ukraine; 2(4): 04NAMB28-1-04NAMB28-4.
32. Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 2010; 47(6): 587–97. <> <PubMed>
33. Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol 2016; 46(4): 964–70. <>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)