Acta Med. 2018, 61: 137-143
https://doi.org/10.14712/18059694.2018.132
Histological Features of Oral Cavity Mucous Membrane Epithelium in Six-Month-Old Experimental Animals Born with Macrosomia
References
1. J Am Coll Nutr 2004; 23 Suppl 6: 588S–595S.
< DF. The developmental origins of adult disease. https://doi.org/10.1080/07315724.2004.10719428>
2. J Biomed Res 2012 Jul; 26(4): 235–40.
< S, An X, Fang L, et al. Risk factors and long-term health consequences of macrosomia: a prospective study in Jiangsu Province, China. https://doi.org/10.7555/JBR.26.20120037>
<PubMed>
3. Obes Res Clin Pract 2016; 11(2): 151–7.
< JD, Taylor Y, Mowrer L, Wintera KM. Dulinbc MF. BMI at birth and overweight at age four. https://doi.org/10.1016/j.orcp.2016.03.010>
4. Pediatr Int 2011; 53(1): 78–84.
< MM. Macrosomia, top of the iceberg: the charm of underlying factors. https://doi.org/10.1111/j.1442-200X.2010.03198.x>
5. Pediatrics 2005; 115: e290–e296.
< CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. https://doi.org/10.1542/peds.2004-1808>
6. Semin Reprod Med. 2011 May; 29(3): 257–65.
< KM, Inskip HM, Hanson, MA. The long-term effects of prenatal development on growth and metabolism. https://doi.org/10.1055/s-0031-1275518>
<PubMed>
7. PLoS Med 2008; 5: e193.
< S, De Stavola B, McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. https://doi.org/10.1371/journal.pmed.0050193>
<PubMed>
8. Neonatology 2010; 98(3): 238–44.
< GM, Dallas LM, Haskell SE, Roghair RD. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. https://doi.org/10.1159/000285629>
<PubMed>
9. Mizhnarodnii endokrynolohichnii zhurnal 2010; 8: 106–15.
, AB. Reproduktivnoe zdorove zhenschin, rodivshihsya s polyarnyimi znacheniyami massyi tela [Reproductive health of women born with polar body weight].
10. Grischenko VI. Krupnyiy plod (kliniko-morfologicheskoe issledovanie). Kiev: Zdorovya, 1991: 183.
11. Yakovtsova AF, Sorokina IV, Aleshchenko IE Immune system of the human fetus in large and IUGR fetuses [in Russian]. Kharkov: BSF “Antiqua”, 2004: 218.
12. Rossiiskij vestnik akushera-ginekologa 2013; 13(4): 86–8. [in Russian].
, AV. Krupnyj plod: mify i real’nost’ (A large fetus: myths and realities).
13. Profilaktychna ta Dytiacha Stomatologia. 2009; 1: 12–7.
NI, Dubetska-Hrabous IS. Caries Risk Factors in Period of Initiation and Mineralization of Milk Teeth. [in Ukrainian]
14. PLoS One 2015; 10(7): e0133872.
< H, Tanaka T, Suzuki K, Akiyama T, Okinawa Child Health Study Group, Yamagata Z. Macrosomic neonates carry increased risk of dental caries in early childhood: findings from a cohort study, the Okinawa child health study. Japan. https://doi.org/10.1371/journal.pone.0133872>
<PubMed>
15. Dent J 2014; 2(3): 118–33.
< A, Molund U, Drevsäter E, Modéer T. High birth weight is a risk factor of dental caries increment during adolescence in Sweden. https://doi.org/10.3390/dj2040118>
16. Ryabokon E, Garmash O, Nazarenko L, Babajanyan E. Dentists view on fetal macrosomia. Srodowisko a stan zdorowia jamy ustnej X Konferencja Naukowo-Szkoleniowa, Naleczow, Polska, 27.04.2016. Naleczow, 2016: 70.
17. Georgian Medical News 2017; 3(263): 14–23.
O. An eruption pattern of deciduous teeth in children born with fetal macrosomia during the first year of life.
18. International Journal of Clinical Dentistry 2017; 10(3): 200–10.
O, Ryabokon E. The Effect of Fetal Macrosomia on the Neonate and Infant Dental Health.
19. Analisis of oral health in newborns with macrosomia in Kharkiv city. Lik Sprava. 2017; 3–4: 122–6.
20. Cell Tissue Res 2015; 360(1): 13–28.
< L, Janáček J. Confocal stereology: an efficient tool for measurement of microscopic structures. https://doi.org/10.1007/s00441-015-2138-3>
21. Microsc Microanal 2013; 19(4): 898–906.
< L, Mao XW, Janáček J. Blood capillary length estimation from three-dimensional microscopic data by image analysis and stereology. https://doi.org/10.1017/S1431927613001487>
22. Physiol Res 2014; 63(1): S49–S55.
J, Čapek M, Michálek J, Karen P, Kubínová L. 3D microscopic imaging and evaluation of tubular tissue architecture.
23. Physiol Res 2011; 60(1): 1–13.
I, Janáček J, Kubínová L. Characterization of the capillary network in skeletal muscles from 3D data.
24. Microsc Res Tech 2009; 72(2): 110–9.
< M, Brůza P, Janácek J, Karen P, Kubínová L, Vagnerová R. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. https://doi.org/10.1002/jemt.20652>
25. Gubina-Vakulik GI. Patologichna anatomiia endokrynnyh zaloz plodu pry adaptatsii vagitnoi do dii okremyh seredovyshchnyh faktoriv (Pathological anatomy of the fetal endocrine glands in pregnant woman adaptation to the some environmental factors action). (Dissertation) [In Ukrainian] Ukraine, Kharkiv National Medical University1994.
26. Garmash OV, Ryabokon EN. Gubina-Vakulyk GI. Method of modeling fetal macrosomia in experiment [In Ukrainian]. Patent for utility model. No. 123084 IPC. (Ukraine). Published 02.22.2018.
27. Nature Methods 2012; 9(7): 676–82.
< J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. https://doi.org/10.1038/nmeth.2019>
<PubMed>