Acta Med. 2018, 61: 137-143

https://doi.org/10.14712/18059694.2018.132

Histological Features of Oral Cavity Mucous Membrane Epithelium in Six-Month-Old Experimental Animals Born with Macrosomia

Olga Garmasha, Galina Gubina-Vakulika, David Vondrášekb

aKharkiv National Medical University, Therapeutic Dentistry Department, Ukraine
bInstitute of Physiology of the Czech Academy of Sciences, Department of Biomathematics, Czech Republic

Received June 21, 2018
Accepted November 11, 2018

References

1. Barker DF. The developmental origins of adult disease. J Am Coll Nutr 2004; 23 Suppl 6: 588S–595S. <https://doi.org/10.1080/07315724.2004.10719428>
2. Gu S, An X, Fang L, et al. Risk factors and long-term health consequences of macrosomia: a prospective study in Jiangsu Province, China. J Biomed Res 2012 Jul; 26(4): 235–40. <https://doi.org/10.7555/JBR.26.20120037> <PubMed>
3. Winter JD, Taylor Y, Mowrer L, Wintera KM. Dulinbc MF. BMI at birth and overweight at age four. Obes Res Clin Pract 2016; 11(2): 151–7. <https://doi.org/10.1016/j.orcp.2016.03.010>
4. Donma MM. Macrosomia, top of the iceberg: the charm of underlying factors. Pediatr Int 2011; 53(1): 78–84. <https://doi.org/10.1111/j.1442-200X.2010.03198.x>
5. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: e290–e296. <https://doi.org/10.1542/peds.2004-1808>
6. Godfrey KM, Inskip HM, Hanson, MA. The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med. 2011 May; 29(3): 257–65. <https://doi.org/10.1055/s-0031-1275518> <PubMed>
7. Silva Idos S, De Stavola B, McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med 2008; 5: e193. <https://doi.org/10.1371/journal.pmed.0050193> <PubMed>
8. Hermann GM, Dallas LM, Haskell SE, Roghair RD. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology 2010; 98(3): 238–44. <https://doi.org/10.1159/000285629> <PubMed>
9. Huraseva, AB. Reproduktivnoe zdorove zhenschin, rodivshihsya s polyarnyimi znacheniyami massyi tela [Reproductive health of women born with polar body weight]. Mizhnarodnii endokrynolohichnii zhurnal 2010; 8: 106–15.
10. Grischenko VI. Krupnyiy plod (kliniko-morfologicheskoe issledovanie). Kiev: Zdorovya, 1991: 183.
11. Yakovtsova AF, Sorokina IV, Aleshchenko IE Immune system of the human fetus in large and IUGR fetuses [in Russian]. Kharkov: BSF “Antiqua”, 2004: 218.
12. Sorokina, AV. Krupnyj plod: mify i real’nost’ (A large fetus: myths and realities). Rossiiskij vestnik akushera-ginekologa 2013; 13(4): 86–8. [in Russian].
13. Smolyar NI, Dubetska-Hrabous IS. Caries Risk Factors in Period of Initiation and Mineralization of Milk Teeth. [in Ukrainian] Profilaktychna ta Dytiacha Stomatologia. 2009; 1: 12–7.
14. Yokomichi H, Tanaka T, Suzuki K, Akiyama T, Okinawa Child Health Study Group, Yamagata Z. Macrosomic neonates carry increased risk of dental caries in early childhood: findings from a cohort study, the Okinawa child health study. Japan. PLoS One 2015; 10(7): e0133872. <https://doi.org/10.1371/journal.pone.0133872> <PubMed>
15. Julihn A, Molund U, Drevsäter E, Modéer T. High birth weight is a risk factor of dental caries increment during adolescence in Sweden. Dent J 2014; 2(3): 118–33. <https://doi.org/10.3390/dj2040118>
16. Ryabokon E, Garmash O, Nazarenko L, Babajanyan E. Dentists view on fetal macrosomia. Srodowisko a stan zdorowia jamy ustnej X Konferencja Naukowo-Szkoleniowa, Naleczow, Polska, 27.04.2016. Naleczow, 2016: 70.
17. Garmash O. An eruption pattern of deciduous teeth in children born with fetal macrosomia during the first year of life. Georgian Medical News 2017; 3(263): 14–23.
18. Garmash O, Ryabokon E. The Effect of Fetal Macrosomia on the Neonate and Infant Dental Health. International Journal of Clinical Dentistry 2017; 10(3): 200–10.
19. Analisis of oral health in newborns with macrosomia in Kharkiv city. Lik Sprava. 2017; 3–4: 122–6.
20. Kubínová L, Janáček J. Confocal stereology: an efficient tool for measurement of microscopic structures. Cell Tissue Res 2015; 360(1): 13–28. <https://doi.org/10.1007/s00441-015-2138-3>
21. Kubínová L, Mao XW, Janáček J. Blood capillary length estimation from three-dimensional microscopic data by image analysis and stereology. Microsc Microanal 2013; 19(4): 898–906. <https://doi.org/10.1017/S1431927613001487>
22. Janáček J, Čapek M, Michálek J, Karen P, Kubínová L. 3D microscopic imaging and evaluation of tubular tissue architecture. Physiol Res 2014; 63(1): S49–S55.
23. Eržen I, Janáček J, Kubínová L. Characterization of the capillary network in skeletal muscles from 3D data. Physiol Res 2011; 60(1): 1–13.
24. Capek M, Brůza P, Janácek J, Karen P, Kubínová L, Vagnerová R. Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. Microsc Res Tech 2009; 72(2): 110–9. <https://doi.org/10.1002/jemt.20652>
25. Gubina-Vakulik GI. Patologichna anatomiia endokrynnyh zaloz plodu pry adaptatsii vagitnoi do dii okremyh seredovyshchnyh faktoriv (Pathological anatomy of the fetal endocrine glands in pregnant woman adaptation to the some environmental factors action). (Dissertation) [In Ukrainian] Ukraine, Kharkiv National Medical University1994.
26. Garmash OV, Ryabokon EN. Gubina-Vakulyk GI. Method of modeling fetal macrosomia in experiment [In Ukrainian]. Patent for utility model. No. 123084 IPC. (Ukraine). Published 02.22.2018.
27. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 2012; 9(7): 676–82. <https://doi.org/10.1038/nmeth.2019> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive