Acta Med. 2018, 61: 98-102

https://doi.org/10.14712/18059694.2018.125

Next Generation Sequencing in Molecular Diagnosis of Lynch Syndrome – a Pilot Study Using New Stratification Criteria

Ivana Kašubováa, Veronika Holubekováa, Katarína Janíkováa,b, Barbora Váňováa,c, Zuzana Sňahničanováa, Michal Kalmanb, Lukáš Plankb, Zora Lasabováa,c

aDivision of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia
bDepartment of Pathological Anatomy, Slovakia, Comenius University in Bratislava, Jessenius Faculty of Medicine University Hospital in Martin, Slovakia
cDepartment of Molecular Biology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia

Received May 15, 2018
Accepted September 10, 2018

References

1. Niessen RC, Hofstra RM, Westers H, Ligtenberg MJ, Kooi K, Jager PO. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes cancer 2009; 48(8): 373–744.
2. Peltomäki P. Update on Lynch syndrome genomics. Familial Cancer 2016; 15: 385–93. <https://doi.org/10.1007/s10689-016-9882-8> <PubMed>
3. Ramsoekh D, Van Leerdam NE, Wagner A, Kuipers EJ. Review article: Detection and management of hereditary non-polyposis colorectal cancer (Lynch syndrome). Aliment Pharmacol Ther 2007; 2: 101–11. <https://doi.org/10.1111/j.1365-2036.2007.03492.x>
4. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer. New England Journal of Medicine 2005; 352 (18): 1851–60. <https://doi.org/10.1056/NEJMoa043146>
5. McGivern A, Wynter CV, Whitehall VL, et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Familial Cancer 2004; 3(2): 101–7. <https://doi.org/10.1023/B:FAME.0000039861.30651.c8>
6. Cohen SA, Laurino M, Bowen DJ, et al. Initiation of universal tumor screening for lynch syndrome in colorectal cancer patients as a model for the implementation of genetic information into clinical oncology practice. Cancer 2016; 122 (3): 393–401. <https://doi.org/10.1002/cncr.29758> <PubMed>
7. Provenzale D, Gupta S, Ahnen DJ, et al. Genetic/familial high-risk assessment: colorectal version 1.2016. NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network 2016; 14 (8): 1010–30. <https://doi.org/10.6004/jnccn.2016.0108>
8. Dovichi NJ. DNA sequencing by capillary electrophoresis. Electrophoresis 1997; 18 (12–13): 2393–9. <https://doi.org/10.1002/elps.1150181229>
9. Thompson BA, Spurdle AB, Plazzer JP. Application of a five-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants lodged on the InSight locis specific database. Nature Genetics 2014; 46: 107–15. <https://doi.org/10.1038/ng.2854> <PubMed>
10. Rey JM, Ducros V, Pujol P, et al. Improving mutation screening in patients with colorectal cancer predisposition using nex-generation sequencing. Journal of Molecular Diagnostics 2017; 19(4): 589–601. <https://doi.org/10.1016/j.jmoldx.2017.04.005>
11. Kašubová I, Jašek K, Lasabová Z, Kalman M, Plank L. Detekcia mikrosatelitnej instability a mutácie V600E v géne BRAF u pacientov s kolorektálnym karcinómom. In: Molekulová biológia v medicíne 3. Prehľady, protokoly, aplikácie. Univerzita Komenského v Bratislave, Jesseniova lekárska fakulta v Martine, ed. Lasabová Z, 2015, 10–17.
12. Jasek K, Buzalkova V, Szepe P, Plank L, Lasabova Z. Limits of dideoxysequencing in the detection of somatic mutations in gastrointestinal stromal tumors. Acta Medica Martiniana 2015; 15 (3): 13–20. <https://doi.org/10.1515/acm-2015-0013>
13. Jasek K, Buzalkova V, Minarik G, et al. Detection of mutations in the BRAF gene in patients with KIT and PDGFA wild-type gastrointrestinal stromal tumors. Virchows Archives 2017; 470: 29–36. <https://doi.org/10.1007/s00428-016-2044-4>
14. Vazan M, Kasubova I, Vanochova A, Lukac P, Plank L, Lasabova Z. Implementation of microfluidic chip electrophoresis for the detection of B-cell clonality. Acta Medica Martiniana 2016; 16: 14–23. <https://doi.org/10.1515/acm-2016-0002>
15. Plaschke J, Kruger S, Dietmaier W, et al. Eight novel MSH6 germline mutations in patients with familial and nonfamilial colorectal cancer selected by loss of protein expression in tumor tissue. Human Mutation 2004; 23(3): 285. <https://doi.org/10.1002/humu.9217>
16. Steinke V, Rahner N, Morak M, et al. No association between MUTYH and MSH6 germline mutations in 64 HNPCC patients. European Journal of Human Genetics 2008; 16: 587–92. <https://doi.org/10.1038/ejhg.2008.26>
17. Arnold A, Payne S, Fisher S, et al. An individual with Muir-Torre syndrome found to have a pathogenic MHS6 gene mutation. Familial Cancer 2007; 6: 317–21. <https://doi.org/10.1007/s10689-007-9119-y>
18. Serratì S, De Summa S, Pilato B, et al. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther 2016; 9: 7355–65. <https://doi.org/10.2147/OTT.S99807> <PubMed>
19. Hendriks YM, Wagner A, Morreau H, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 2004; 127: 17–25. <https://doi.org/10.1053/j.gastro.2004.03.068>
20. Plaschke J, Engel C, Kruger S. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Non-polyposis Colorectal Cancer Consortium. Journal of Clinical Oncology 2004; 22: 4486–94. <https://doi.org/10.1200/JCO.2004.02.033>
21. Peltomäki P. Lynch syndrome genes. Familial Cancer 2005; 4(3): 227–32. <https://doi.org/10.1007/s10689-004-7993-0>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive