Acta Med. 2018, 61: 8-16

https://doi.org/10.14712/18059694.2018.17

Exhaled Breath Condensate: Pilot Study of the Method and Initial Experience in Healthy Subjects

Eva Peterováa,bID, Jaroslav ChládekcID, Darina KohoutovábID, Veronika Knoblochováb, Paula MorávkovábID, Jaroslava VávrovádID, Martina ŘezáčováaID, Jan BurešbID

aDepartment of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
b2nd Department of Internal Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
cDepartment of Pharmacology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
dInstitute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic

Received December 13, 2017
Accepted April 27, 2018

References

1. Aherrera A, Olmedo P, Grau-Perez M et al. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environmental Research 2017; 19: 313–20. <https://doi.org/10.1016/j.envres.2017.08.014>
2. Ahmed N, Bezabeh T, Ijare OB et al. Proton Magnetic Resonance Spectroscopy (1H MRS) of Sputum and Exhaled Breath Condensate: A Noninvasive Tool for Lung Cancer Screening. Traditional Journal of Radiation Oncology 2016; 96: E432. <https://doi.org/10.1016/j.ijrobp.2016.06.1716>
3. Aksenov AA, Zamuruyev KO, Pasamontes A et al. Analytical methodologies for broad metabolite coverage of exhaled breath condensate. Journal of Chromatography B 2017; 1061–1062: 17–25. <https://doi.org/10.1016/j.jchromb.2017.06.038> <PubMed>
4. Antus B, Barta I, Kullmann T et al. Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease: A longitudinal study. American Journal of Respiratory and Critical Care Medicine 2010; 182: 1492–7. <https://doi.org/10.1164/rccm.201003-0451OC>
5. Aprea E, Cappellin L, Gasperi F et al. Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet. Journal of Chromatography B 2014; 966: 208–13. <https://doi.org/10.1016/j.jchromb.2014.02.015>
6. Augusto VS, Rodrigues AJ, C Silveira AP et al. Exhaled and plasma nitrite: a comparative study among healthy, cirrhotic and liver transplant patients. Arquivos De Gastroenterologia 2014; 51: 16–20. <https://doi.org/10.1590/S0004-28032014000100004>
7. Baldwin SR, Grum CM, Boxer LA et al. Oxidant activity in expired breath of patients with adult respiratory distress syndrome. The Lancet 1986; 4: 11–3. <https://doi.org/10.1016/S0140-6736(86)91895-7>
8. Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 2001; 56: 456–61. <https://doi.org/10.1136/thorax.56.6.456> <PubMed>
9. Barreto M, Villa MP, MD, Olita C et al. 8-Isoprostane in Exhaled Breath Condensate and Exercise-Induced Bronchoconstriction in Asthmatic Children and Adolescents. Chest Journal 2009; 135: 66–73. <https://doi.org/10.1378/chest.08-0722>
10. Biernacki WA, Kharitonov SA, Barnes PJ. Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003; 58: 294–8. <https://doi.org/10.1136/thorax.58.4.294> <PubMed>
11. Bikov A, Galffy G, Tamasi L et al. Exhaled breath condensate pH decreases during exercise‐induced bronchoconstriction. R espirology 2014; 19: 563–9.
12. Bloemen K, Lissensa G, Desagerb K, Schoetersa G. Determinants of variability of protein content, volume and pH of exhaled breath condensate. Respiratory Medicine 2007; 101: 13311–7. <https://doi.org/10.1016/j.rmed.2006.10.008>
13. Bodini A, Tenero L, Sandri M et al. Serum and exhaled breath condensate leptin levels in asthmatic and obesity children: a pilot study. Journal of Breath Research 2017; 11: 046005. <https://doi.org/10.1088/1752-7163/aa61c5>
14. Caglieri A, Goldoni M, Acampa O et al. The Effect of Inhaled Chromium on Different Exhaled Breath Condensate Biomarkers among Chrome-Plating Workers. Environmental Health Perspectives 2006; 114: 542–46. <https://doi.org/10.1289/ehp.8506> <PubMed>
15. Ćalušić AL, Varnai VM, Macan J. Acute effects of smoking and food consumption on breath condensate pH in healthy adults. Experimental Lung Research 2011; 37: 92–100. <https://doi.org/10.3109/01902148.2010.521616>
16. Cap P, Maly M, Pehel F, Pelikan Z. Exhaled leukotrienes and bronchial responsiveness to methacholine in patients with seasonal allergic rhinitis. Annals of Allergy, Asthma & Immunology 2009; 102: 103–9. <https://doi.org/10.1016/S1081-1206(10)60238-4>
17. Carpagnano GE, Carratú P, Gelardi M et al. Increased IL-6 and IL-4 in exhaled breath condensate of patients with nasal polyposis. Monaldi Archives for Chest Disease 2009; 71: 3–7.
18. Carpagnano GE, Spanevello A, Sabato R et al. Exhaled pH, exhaled nitric oxide, and induced sputum cellularity in obese patients with obstructive sleep apnea syndrome. Translational Research 2008; 151: 45–50. <https://doi.org/10.1016/j.trsl.2007.09.004>
19. Carpenter CT, Price PV, Christman BW. Exhaled Breath Condensate Isoprostanes Are Elevated in Patients With Acute Lung Injury or ARDS. Chest 1998; 114: 1653:59. <https://doi.org/10.1378/chest.114.6.1653>
20. Carraro S, Giordano G, Reniero F et al. Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy 2013; 68: 110–17. <https://doi.org/10.1111/all.12063>
21. Carter SR, Davis CS, Kovacs EJ. Exhaled breath condensate collection in the mechanically ventilated patient. Respiratory Medicine 2012; 106: 601–13. <https://doi.org/10.1016/j.rmed.2012.02.003> <PubMed>
22. Conrad DH, Goyette J, Thomas PS. Proteomics as a Method for Early Detection of Cancer: A Review of Proteomics, Exhaled Breath Condensate, and Lung Cancer Screening 2008; 23: 78–84.
23. Corradi M, Folesani G, Andreoli R et al. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. American Journal of Respiratory and Critical Care Medicine 2003; 167: 395–9. <https://doi.org/10.1164/rccm.200206-507OC>
24. Corradi M, Gergelova P, Mutti A. Use of exhaled breath condensate to investigate occupational lung diseases. Current Opinion in Allergy and Clinical Immunology 2010; 10: 93–8. <https://doi.org/10.1097/ACI.0b013e3283357fb7>
25. Cunningham S, McColm JR, Pei Ho L, Greening AP, Marshal TG. Measurement of inflammatory markers in the breath condensate of children with cystic fibrosis. The European Respiratory Journal 2000; 15: 955–7. <https://doi.org/10.1034/j.1399-3003.2000.15e24.x>
26. Czebe K, Barta I, Antus B et al. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respiratory Medicine 2008; 102: 720–25. <https://doi.org/10.1016/j.rmed.2007.12.013>
27. Dalaveris E, Kerenidi T, Katsabeki-Katsafli A et al. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 2009; 64: 219–25. <https://doi.org/10.1016/j.lungcan.2008.08.015>
28. Edmé JL, Tellart AS, Launay D et al. Cytokine concentrations in exhaled breath condensates in systemic sclerosis. Inflammation Research 2008; 57: 151–6. <https://doi.org/10.1007/s00011-007-7136-9>
29. Effros RM, Casaburi R, Su J et al. The effects of volatile salivary acids and bases on exhaled breath condensate pH. American Journal of Respiratory and Critical Care Medicine 2006; 173: 386–92. <https://doi.org/10.1164/rccm.200507-1059OC> <PubMed>
30. Effros RM, Hoagland KW, Bosbous M et al. Dilution of respiratory solutes in exhaled condensates. American Journal of Respiratory and Critical Care Medicine 2002; 165: 663–9. <https://doi.org/10.1164/ajrccm.165.5.2101018>
31. Effros RM. Do low exhaled condensate NH4+ concentrations in asthma reflect reduced pulmonary production? American Journal of Respiratory and Critical Care Medicine 2003; 167: 91–2. <https://doi.org/10.1164/ajrccm.167.1.364>
32. Esther CR Jr, Boysen G, Olsen BM et al. Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology 2009; 296: 1987–93. <https://doi.org/10.1152/ajplung.90512.2008> <PubMed>
33. Fulcher YG, Fotso M, Chang CH et al. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate. PLOS ONE 2016; 11: e0164394. <https://doi.org/10.1371/journal.pone.0164394> <PubMed>
34. García-Gómez D, Bregy L, Nussbaumer-Ochsne Y et al. Detection and Quantification of Benzothiazoles in Exhaled Breath and Exhaled Breath Condensate by Real-Time Secondary Electrospray Ionization– High-Resolution Mass Spectrometry and Ultra-High Performance Liquid Chromatography. Environmental Science & Technology 2015; 49: 12519–24. <https://doi.org/10.1021/acs.est.5b03809>
35. Gasparič J, Hyšpler R, Tichá A. Exhaled breath and metabolism disorders (in Czech). Vesmír 2004; 83: 283–285.
36. Goldoni M, Caglieri A, Andreoli R et al. Influence of condensation temperature on selected exhaled breath parameters. BMC Pulmonary Medicine 2005; 5: 1–9. <https://doi.org/10.1186/1471-2466-5-10> <PubMed>
37. Grob NM, Aytekin M, Dweik RA. Biomarkers in exhaled breath condensate: a review of collection, processing and analysis. Journal of Breath Research 2008; 2: 1752–55.
38. Guillen-Del Castillo A, Sánchez-Vidaurre S, Simeόn-Aznar C, et al FRI0442 Prognostic Role of Exhaled Breath Condensate in Patients with Pulmonary Involvement Associated to Systemic Sclerosis. Annals of the Rheumatic Diseases 2015; 74: 587. <https://doi.org/10.1136/annrheumdis-2015-eular.5973>
39. Heffler E, Crimi C, Brussino L et al. Exhaled breath condensate pH and cysteinyl leukotriens in patients with chronic cough secondary to acid gastroesophageal reflux. Journal of Breath Research 2017; 11: 016002. <https://doi.org/10.1088/1752-7163/11/1/016002>
40. Hoffmeyer F, Raulf-Heimsoth M, Harth V, Bünger J, Brüning T. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices. BMC Pulmonary Medicine 2009; 9: 48. <https://doi.org/10.1186/1471-2466-9-48> <PubMed>
41. Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49(4). <https://doi.org/10.1183/13993003.00965-2016>
42. Horváth I, Hunt J, Barnes PJ. Exhaled breath condensate: methodological recommendations and unresolved questions. The European Respiratory Journal 2005; 26: 523–48. <https://doi.org/10.1183/09031936.05.00029705>
43. Hryniuk A, Ross BM. A preliminary investigation of exhaled breath from patients with celiac disease using selected ion flow tube mass spectrometry. Journal of Gastrointestinal and Liver Diseases 2010; 19: 15–20.
44. Huang Y, Lemberg DA, Day AS et al. Markers of inflammation in the breath in paediatric inflammatory bowel disease. Gastroenterology 2014; 59: 505–10.
45. Hunt J, Yu Y, Burns J et al. Identification of acid reflux cough using serial assays of exhaled breath condensate pH. Cough 2006; 2: 3. <https://doi.org/10.1186/1745-9974-2-3> <PubMed>
46. Chen JL, Lv XD, Ma H2, Chen JR, Huang JA. Detection of cancer embryo antigen and endothelin-1 in exhaled breath condensate: A novel approach to investigate non-small cell lung cancer. Molecular and Clinical Oncology 2016; 5: 124–8. <https://doi.org/10.3892/mco.2016.902> <PubMed>
47. Chladkova J, Krcmova I, Chladek J et al. Validation of nitrite and nitrate measurements in exhaled breath condensate. Respiration 2006; 73: 173–9. <https://doi.org/10.1159/000088050>
48. Jackson TC, Zhang YV, Sime PJ, Phipps RP, Kottmann RM. Development of an accurate and sensitive method for lactate analysis in exhaled breath condensate by LC MS/MS. Journal of Chromatography B 2017; 1061–2: 468–73. <https://doi.org/10.1016/j.jchromb.2017.07.041>
49. Karakoc GB, Inal A, Yilmaz M, Altintas DU, Kendirli SG. Exhaled breath condensate MMP-9 levels in children with bronchiectasis. Pediatric Pulmonology 2009; 44: 1010–6. <https://doi.org/10.1002/ppul.21096>
50. Kim KH, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. Trends in Analytical Chemistry 2012; 33: 1–8. <https://doi.org/10.1016/j.trac.2011.09.013>
51. Koczulla AR, Noeske S, Herr C et al. Acute and chronic effects of smoking on inflammation markers in exhaled breath condensate in current smokers. Respiration 2010; 79: 61–7. <https://doi.org/10.1159/000245325>
52. Krenke K, Peradzyńska J, Lange J et al. Inflammatory cytokines in exhaled breath condensate in children with inflammatory bowel diseases. Pediatric Pulmonology 2014; 49: 1190–5. <https://doi.org/10.1002/ppul.22953>
53. Krishnan ST, Devadhasan JP, Kim S. Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients. Analytical and Bioanalytical Chemistry 2017; 409: 21–31. <https://doi.org/10.1007/s00216-016-9903-3>
54. Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Analytica Chimica Acta 2013; 805: 1–18. <https://doi.org/10.1016/j.aca.2013.07.049>
55. Kullmann T, Barta I, Antus B, Horváth I. Drinking Influences Exhaled Breath Condensate Acidity. Lung 2008; 186: 263–68. <https://doi.org/10.1007/s00408-008-9086-6>
56. Kurada S, Alkhouri N, Fiocchi C, Dweik R, Rieder F. Review article: breath analysis in inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics 2015; 41: 329–41. <https://doi.org/10.1111/apt.13050>
57. Ladva CN, Golan R, GreenwaldR, et al. Metabolomic Profiles of Plasma, Exhaled Breath Condensate, and Saliva are Correlated with Potential for Air Toxics Detection. Journal of Breath Research 2017; JBR-100601.R2.
58. Lee AL, Button BM, Denehy L et al. Exhaled Breath Condensate Pepsin: Potential Noninvasive Test for Gastroesophageal Reflux in COPD and Bronchiectasis. Respiratory Care 2015; 60: 244–50. <https://doi.org/10.4187/respcare.03570>
59. Lee JS, Shin JH, Hwang J-H, Baek JE, Choi B-S. Malondialdehyde and 3-Nitrotyrosine in Exhaled Breath Condensate in Retired Elderly Coal Miners with Chronic Obstructive Pulmonary Disease. Safety and Health at Work 2014; 5: 91–6. <https://doi.org/10.1016/j.shaw.2014.03.001> <PubMed>
60. Leese E, Staff1 JF, CarolanVA, Morton J. Exhaled Breath Condensate: A Novel Matrix forBiological Monitoring to Assess Occupational Exposure to Respirable Crystalline Silica. Annals of Work Exposures and Health 2017; 61: 902–6. <https://doi.org/10.1093/annweh/wxx047>
61. Li Y, Chongsuvivatwong V, Geater A, Liu A. Exhaled breath condensate cytokine level as a diagnostic tool for obstructive sleep apnea syndrome. Sleep Medicine 2009; 10: 95–103. <https://doi.org/10.1016/j.sleep.2007.11.013>
62. Lin X, Wu Z, Fan Y et al. Correlation analysis of surfactant protein A and surfactant protein D with lung function in exhaled breath condensate from lung cancer patients with and without COPD. Molecular Medicine Reports 2017; 16: 4948–54. <https://doi.org/10.3892/mmr.2017.7182>
63. Liu D, Luo G, Luo C et al. Changes in the Concentrations of Mediators of Inflammation and Oxidative Stress in Exhaled Breath Condensate During Liver Transplantation and Their Relations With Postoperative ARDS. Respiratory care 2015; 60: 679–88. <https://doi.org/10.4187/respcare.03311>
64. Loukides S, Horvath I, Wodehouse T, Cole PJ, Barnes PJ. Elevated Levels of Expired Breath Hydrogen Peroxide in Bronchiectasis. American Journal of Respiratory and Critical Care Medicine 1998; 158: 991–994. <https://doi.org/10.1164/ajrccm.158.3.9710031>
65. Łuczyñska M, Szkudlarek U, Dziankowska-Bartkowiak B, Waszczykowska E, Kasielski M, Sysa-Jedrzejowska A, Nowak D. Elevated exhalation of hydrogen peroxide in patients with systemic sclerosis. Eur J Clin Invest 2003; 33: 274–279. <https://doi.org/10.1046/j.1365-2362.2003.01138.x>
66. Mahairidou A, Rodopoulou S, Tomos I et al. Exhaled Breath Condensate Acidification Occurs During Surgery for Abdominal Cancer. Anticancer Research 2017; 37: 3315–21.
67. Marie-Desvergne C, Dubosson M, Touri L et al. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate. Journal of Breath Research 2016; 10: 036006. <https://doi.org/10.1088/1752-7155/10/3/036006>
68. Moloney ED, Mumby SE, Gajdocsi R et al. Exhaled breath condensate detects markers of pulmonary inflammation after cardiothoracic surgery. American Journal of Respiratory and Critical Care Medicine 2004; 169: 64–69. <https://doi.org/10.1164/rccm.200307-1005OC>
69. Mosquera-Restrepo SF, Caro AC, García LF, Peláez-Jaramillo CA, Rojas M. Fatty acid derivative, chemokine, and cytokine profiles in exhaled breath condensates can differentiate adult and children paucibacillary tuberculosis patients. Journal of Breath Research 2017; 11: 016003. <https://doi.org/10.1088/1752-7163/11/1/016003>
70. Mutlu GM, Garey KW, Robbins RA et al. Collection and Analysis of Exhaled Breath Condensate in Humans. American Journal of Respiratory and Critical Care Medicine 2001; 164: 731–7. <https://doi.org/10.1164/ajrccm.164.5.2101032>
71. Niimi A, Nguyen LT, Usmani O, Mann B, Chung KF. Reduced pH and chloride levels in exhaled breath condensate of patients with chronic cough. Thorax 2004 Jul; 59: 608–12. <https://doi.org/10.1136/thx.2003.012906> <PubMed>
72. Ojoo JC, Mulrennan SA, Kastelik JA, Morice AH, Redington AE. Exhaled breath condensate pH and exhaled nitric oxide in allergic asthma and in cystic fibrosis. Thorax 2005; 60: 22–6. <https://doi.org/10.1136/thx.2003.017327> <PubMed>
73. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proceedings of the National Academy of Sciences 1971; 68: 2374–6. <https://doi.org/10.1073/pnas.68.10.2374> <PubMed>
74. Peel AM, Crossman-Barnes CJ, Tang J et al. Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. Journal of Breath Research 2017; 11: 016011. <https://doi.org/10.1088/1752-7163/aa5a8a>
75. Pelclova D, Barosova H, Kukutschova J et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: a cross-sectional study. Journal of Breath Research 2015; 9: 036008. <https://doi.org/10.1088/1752-7155/9/3/036008>
76. Pelclová D, Fenclová Z, Kacer P et al. Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Industrial Health 2008; 46: 484–9. <https://doi.org/10.2486/indhealth.46.484>
77. Pelclová D, Fenclová Z, Kačer P et al. 8-isoprostane and Leukotrienes in Exhaled Breath Condensate in Czech Subjects with Silicosis. Industrial Health 2007; 45: 766–74. <https://doi.org/10.2486/indhealth.45.766>
78. Pelclova P, Zdimal V, Kacer P et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. Journal of Breath Research 2016; 10: 016004. <https://doi.org/10.1088/1752-7155/10/1/016004>
79. Pleil JD. Breath biomarkers in toxicology. Archives of Toxicology 2016; 90: 2669–82. <https://doi.org/10.1007/s00204-016-1817-5>
80. Radauceanu A, Grzebyk M, Edmé JL et al. Effects of occupational exposure to poorly soluble forms of beryllium on biomarkers of pulmonary response in exhaled breath of workers in machining industries. Toxicology Letters 2016; 263: 26–33. <https://doi.org/10.1016/j.toxlet.2016.10.013>
81. Reder NP, Davis CS, Kovacs EJ, Fisichella PM. The diagnostic value of gastroesophageal reflux disease (GERD) symptoms and detection of pepsin and bile acids in bronchoalveolar lavage fluid and exhaled breath condensate for identifying lung transplantation patients with GERD-induced aspiration. Surgical Endoscopy 2014; 28: 1794–800. <https://doi.org/10.1007/s00464-013-3388-3> <PubMed>
82. Rindlisbacher R, Strebel C, Guler S et al. Exhaled breath condensate as a potential biomarker tool for idiopathic pulmonary fibrosis – a pilot study. Journal of Breath Research 2017; 12(1): 016003. <https://doi.org/10.1088/1752-7163/aa840a>
83. Robroeks CMHHT, van de Kant KDG, Jöbsis Q et al. Exhaled nitric oxide and biomarkers in exhaled breath condensate indicate the presence, severity and control of childhood asthma. Clinical and Experimental Allergy 2007; 37: 1303–11. <https://doi.org/10.1111/j.1365-2222.2007.02788.x>
84. Rolla G, Fusaro E, Nicola S, Bucca C, Peroni C, Parisi S, Cassinis MC, Ferraris A, Angelino F, Heffler E, Boita M, Brussino L. Th-17 cytokines and interstitial lung involvement in systemic sclerosis. J Breath Res 2016; 10: 046013. <https://doi.org/10.1088/1752-7155/10/4/046013>
85. Romero PV, Rodríguez B, Martínez S et al. Analysis of Oxidative Stress in Exhaled Breath Condensate From Patients With Severe Pulmonary Infections. Archivos De Bronconeumologia 2006; 42: 113–9. <https://doi.org/10.1016/S1579-2129(06)60128-6>
86. Rosias PP, Robroeks CM, Kesker A et al. Biomarker reproducibility in exhaled breath condensate collected with different condensers. The European Respiratory Journal 2008; 31: 934–42. <https://doi.org/10.1183/09031936.00073207>
87. Sack U, Scheibe R, Wotzel M et al. Multiplex Analysis of Cytokines in Exhaled Breath Condensate. International Society for Analytical Cytology 2006; 69A: 169–72. <https://doi.org/10.1002/cyto.a.20231>
88. Shahid SK, Kharitonov SA, Wilson NM, Bush A, Barnes PJ. Increased Interleukin-4 and Decreased Interferon-γ in Exhaled Breath Condensate of Children with Asthma. American Journal of Respiratory and Critical Care Medicine 2002; 165: 1290–93. <https://doi.org/10.1164/rccm.2108082>
89. Schwarz EI, Engler A, Kohler M. Exhaled breath analysis in obstructive sleep apnea. Journal Expert Review of Respiratory Medicine 2017; 11: 631–9. <https://doi.org/10.1080/17476348.2017.1338950>
90. Soyer OU, Dizdar EA, Keskin O, Lilly C, Kalayci O. Comparison of two methods for exhaled breath condensate collection. Allergy 2006; 61: 1016–18. <https://doi.org/10.1111/j.1398-9995.2006.01064.x>
91. Soyer T, Soyer OU, Birben E et al. Pepsin levels and oxidative stress markers in exhaled breath condensate of patients with gastroesophageal reflux disease. Journal of Pediatric Surgery 2013; 48: 2247–50. <https://doi.org/10.1016/j.jpedsurg.2013.02.100>
92. Syslová K, Kačer P, Kuzma M et al. Determination of 8-iso-prostaglandin F2 in exhaled breath condensate using combination of immunoseparation and LC–ESI-MS/MS. Journal of Chromatography B 2008; 867: 8–14. <https://doi.org/10.1016/j.jchromb.2008.02.019>
93. Tufvesson E, Bozovic G, Hesselstrand R et al. Increased cysteinyl-leukotrienes and 8-isoprostane in exhaled breath condensate from systemic sclerosis patients. Rheumatology 2010; 49: 2322–6. <https://doi.org/10.1093/rheumatology/keq271>
94. Urs R, Simpson S, Pillow J, Hall H, Clarke M. Exhaled breath condensate: Measuring inflammation and oxidative stress in preterm infants. European Respiratory Journal 2016; 48: OA243.
95. Vass G, Huszár E, Barát E et al. Comparison of Nasal and Oral Inhalation during Exhaled Breath Condensate Collection. American Journal of Respiratory and Critical Care 2003; 167: 850–5. <https://doi.org/10.1164/rccm.200207-716BC>
96. Vaughan J, Ngamtrakulpanit L, Pajewski TN et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. The European Respiratory Journal 2003; 22: 889–94. <https://doi.org/10.1183/09031936.03.00038803>
97. Wheatley CM, Baker SE, Morgan MA et al. Moderate intensity exercise mediates comparable increases in exhaled chloride as albuterol in individuals with cystic fibrosis. Respiratory Medicine 2015; 109: 1001–11. <https://doi.org/10.1016/j.rmed.2015.05.018> <PubMed>
98. Whitehouse A, Brugha R, Mushtaq N, Dundas I, Grigg J. S64 Eosinophil Cationic Protein And Cytokine Analysis In Exhaled Breath Condensate In Paediatric Asthma. Thorax 2014; 69: A36. <https://doi.org/10.1136/thoraxjnl-2014-206260.70>
99. Winters BR, Pleil JD, Angrish MM et al. Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device. Journal of Breath Research 2017; 11(4): 047107. <https://doi.org/10.1088/1752-7163/aa8bbc> <PubMed>
100. Zanconato S, Carraro S, Corradi M et al. Leukotrienes and 8-isoprostane in exhaled breath condensate of children with stable and unstable asthma. Journal of Allergy and Clinical Immunology 2004; 113(2): 63. <https://doi.org/10.1016/j.jaci.2003.10.046>
101. Zang X, Pérez JJ, Jones CM et al. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics. American Society for Mass Spectrometry 2017; 28: 1489–96. <https://doi.org/10.1007/s13361-017-1660-9>
102. Rosias PPR, Dompeling E, Hendriks HJE et al. Exhaled breath condensate in children: Pearls and pitfalls. Pediatr Allergy Immunol 2004; 15: 4–19. <https://doi.org/10.1046/j.0905-6157.2003.00091.x>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive