Acta Med. 2018, 61: 1-7
https://doi.org/10.14712/18059694.2018.16
Cryopreservation of Dental Stem Cells
References
1. World J Stem Cells 2015; 7(5): 839–51.
< PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine. https://doi.org/10.4252/wjsc.v7.i5.839>
<PubMed>
2. Nat Cell Biol 2001; 3(9): 778–84.
< JG, Akhavan M, Fernandes KJ et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. https://doi.org/10.1038/ncb0901-778>
3. Arthritis Res 2000; 2(6): 477–88.
< NJ, Marinova-Mutafchieva L, Adams G et al. Mesenchymal precursor cells in the blood of normal individuals. https://doi.org/10.1186/ar130>
<PubMed>
4. Mol Biol Cell 2002; 13(12): 4279–95.
< PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. https://doi.org/10.1091/mbc.e02-02-0105>
5. J Investig Dermatol Symp Proc 2004; 9: 224–8.
< MH. Regulation of intestinal stem cells. https://doi.org/10.1111/j.1087-0024.2004.09304.x>
6. Arthritis Rheum 2004; 50(5): 1522–32.
< S, Amin R, Gemba T et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. https://doi.org/10.1002/art.20269>
7. Cell Tissue Kinet 1970; 3(4): 393–403.
AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.
8. Cell 2008; 132(4): 598–611.
< SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. https://doi.org/10.1016/j.cell.2008.01.038>
<PubMed>
9. Birth Defects Res C Embryo Today 2004; 72(2): 200–12.
< I, Sharpe PT. Neural crest contribution to mammalian tooth formation. https://doi.org/10.1002/bdrc.20012>
10. J Dent Res 2009; 88(9): 792–806.
< GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. https://doi.org/10.1177/0022034509340867>
<PubMed>
11. Proc Natl Acad Sci USA 2000; 97(25): 13625–30.
< S, Mankani M, Brahim J et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. https://doi.org/10.1073/pnas.240309797>
<PubMed>
12. Proc Natl Acad Sci USA 2003; 100: 5807–12.
< M, Gronthos S, Zhao M et al. SHED: stem cells from human exfoliated deciduous teeth. https://doi.org/10.1073/pnas.0937635100>
<PubMed>
13. PLoS One 2006; 1: 79.
< W, Liu Y, Fang D et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. https://doi.org/10.1371/journal.pone.0000079>
<PubMed>
14. Histochem Cell Biol 2010; 133(1): 95–112.
< E, Doğan BN, Aksoy A et al. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. https://doi.org/10.1007/s00418-009-0646-5>
15. Lancet 2004; 364(9429): 149–55.
< BM, Miura M, Gronthos S et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. https://doi.org/10.1016/S0140-6736(04)16627-0>
16. Matrix Biol 2005; 24(2): 155–65.
< C, Götz W, Schierholz J et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. https://doi.org/10.1016/j.matbio.2004.12.004>
17. J Immunol 2009; 183(12): 7787–98.
< Q, Shi S, Liu Y et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. https://doi.org/10.4049/jimmunol.0902318>
<PubMed>
18. Cancer Treat Res 2007; 138: 83–109.
< F, Critser JK. The science of cryobiology. https://doi.org/10.1007/978-0-387-72293-1_7>
19. Cryobiology 2001; 61: 133–41.
< M, Woods EJ, Acker JP. Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage. https://doi.org/10.1016/j.cryobiol.2010.06.007>
<PubMed>
20. Exp. Cell Res 1972; 71(2): 345–55.
< P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. https://doi.org/10.1016/0014-4827(72)90303-5>
21. Acta Eur Fertil 1995; 26(4): 145–8.
F, Rossi T, Sabatini L et al. Human sperm cryopreservation and reactive oxygen species (ROS) production.
22. Transfusion and Apheresis Science 2012; 46: 137–47.
< A, Naaldijk Y, Fedorova V, Sethe S. Hydroxyethylstarch in cryopreservation – Mechanisms, benefits and problems – review. https://doi.org/10.1016/j.transci.2012.01.007>
23. Archives of oral biology 2014; 59: 970–76.
< D, Werle SB, Steffens D. Effects of Cryopreservation on the characteristics of Dental Pulp Stem Cells of Intact Deciduous teeth. https://doi.org/10.1016/j.archoralbio.2014.04.008>
24. Cryobiology 2009; 59(2): 150–7.
< J, Perry BC, Hockema JJ et al. Optimized Cryopreservation Method for Human Dental Pulp-Derived Stem Cells and Their Tissues of Origin for Banking and Clinical Use. https://doi.org/10.1016/j.cryobiol.2009.06.005>
<PubMed>
25. Transfusion and Apheresis Science 2012; 47: 199–206.
< S, Andiolo G, Bonino F et al. A Novel Method for Banking Dental Pulp Stem Cells. https://doi.org/10.1016/j.transci.2012.06.005>
26. Cryobiology 2001; 62(3): 181–7.
< S, Kaku M, Kawata T et al. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. https://doi.org/10.1016/j.cryobiol.2011.03.001>
27. Norsk Epidemiologi 2014; 24(1–2): 135–40.
< HM, Lygre GB, Haug K et al. A biobank of primary teeth within the Norwegian mother and child cohort study (MoBa) per 2014: a resource for the future. https://doi.org/10.5324/nje.v24i1-2.1814>
28. Tissue Eng C Methods 2008; 14(2): 149–56.
< BC, Zhou D, Wu X, et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. https://doi.org/10.1089/ten.tec.2008.0031>
<PubMed>
29. J Endod 2011; 37(7): 973–9.
< L, Luisi SB, Fernandes R et al. The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. https://doi.org/10.1016/j.joen.2011.04.010>
30. Proc Natl Acad Sci USA 2000; 97(25): 13625–30.
< S, Mankani M, Brahim J et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. https://doi.org/10.1073/pnas.240309797>
<PubMed>
31. Acta Medica 2007; 50(3): 195–201.
J, Soukup T, Ivanakova R et al. Human dental pulp stem cells–isolation and long term cultivation.
32. Int Endod J 2004; 37(3): 185–92.
< SH, Hsiao GY, Huang GT. Role of substance P and calcitonin gene-related peptide in the regulation of interleukin-8 and monocyte chemotactic protein-1 expression in human dental pulp. https://doi.org/10.1111/j.0143-2885.2004.00782.x>
33. J Cell Mol Med 2010; 14(6B): 1635–44.
< L, Rotilio V, Alessandrini M et al. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. https://doi.org/10.1111/j.1582-4934.2009.00848.x>
<PubMed>
34. J Vis Exp 2012; 69: 4372.
R, Eslaminejad MB, Aflatoonian R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods.
35. Cell Tissue Res 2013; 353(1): 65–78.
< P, Gervois P, Fanton Y et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. https://doi.org/10.1007/s00441-013-1630-x>
36. Anticancer Res 1998; 18(6B): 4705–8.
A, Poggi D, Da Prada G et al. Clinical toxicity of cryopreserved circulating progenitor cells infusion.
37. BMC Biotechnol 2012; 12: 49.
< Y, Staude M, Fedorova V et al. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. https://doi.org/10.1186/1472-6750-12-49>
<PubMed>
38. Arch Oral Biol 2004; 49(1): 59–69.
< N, Hamamoto Y, Nakajima T et al. Periodontal regeneration of transplanted rat molars after cryopreservation. https://doi.org/10.1016/j.archoralbio.2003.07.002>
39. Biotechnol Prog 2005; 21(5): 1511–24.
< S, Zvonic S, Floyd E et al. Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. https://doi.org/10.1021/bp050007q>
40. Hum Reprod 2005; 20(7): 1779–85.
< SY, Jee BC, Suh CS et al. Cryopreservation of human embryonic stem cells without the use of a programmable freezer. https://doi.org/10.1093/humrep/deh854>
41. Archives of Oral Biology 2013; 84: 74–81.
< NC-N, Le SH. Doan VN, Ngo LTQ, Tran HLB. Simplified conditions for storing and cryopreservation of dental pulp stem cells. https://doi.org/10.1016/j.archoralbio.2017.09.002>
42. Expert Opin Biol Ther 2013; 13: 673–91.
< S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. https://doi.org/10.1517/14712598.2013.763925>
43. Cryobiology 2014; 69(2): 342–7.
< OG, Smith AJ, Cooper PR et al. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. https://doi.org/10.1016/j.cryobiol.2014.08.003>
44. Cell Tissue Bank 2015; 16(4): 513–22.
< A, Bhattacharyya S, Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. https://doi.org/10.1007/s10561-015-9498-5>
45. Biol Reprod 2010; 82(5): 848–53.
< T, Mai Q, Gao J et al. Cryopreservation of human embryonic stem cells with a new bulk vitrification method. https://doi.org/10.1095/biolreprod.109.080713>
46. J Ayub Med Coll Abbottabad 2015; 27(1): 22–8.
S, Adeel M. Cryopreservation of oocytes.
47. Arch Oral Biol. 2017 Dec; 84: 74–81.
< NC, Le SH, Doan VN, Ngo LTQ, Tran HLB. Simplified conditions for storing and cryopreservation of dental pulp stem cells. https://doi.org/10.1016/j.archoralbio.2017.09.002>
48. Arch Oral Biol 2004; 49(1): 59–69.
< N, Hamamoto Y, Nakajima T et al. Periodontal regeneration of transplanted rat molars after cryopreservation. https://doi.org/10.1016/j.archoralbio.2003.07.002>
49. Fertil Steril 2009; 91: 372–6.
< RC, Gilbert L, Huang JY et al. Live birth after vitrification of in vitro matured human oocytes. https://doi.org/10.1016/j.fertnstert.2007.11.088>
50. Reproduction 2002; 124: 483–9.
< J, Tucker MJ. Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. https://doi.org/10.1530/rep.0.1240483>
51. Fertil Steril 2002; 78(3): 449–54.
< LL, Lopata A.Vitrification can be more favourable than slow cooling. https://doi.org/10.1016/S0015-0282(02)03305-8>
52. Cells Tissues Organs 2002; 196: 23-33.
< SY, Huang GW, Shiung JN et al. Magnetic cryopreservation for dental pulp stem cells. https://doi.org/10.1159/000331247>
53. Tissue Eng Part C Methods 2012; 18(6): 397–440.
< SY, Sun CH, Kuo TF et al. Determination of cryoprotectant for magnetic cryopreservation of dental pulp tissue. https://doi.org/10.1089/ten.tec.2011.0363>
54. J Endod 2010; 36(8): 1336–40.
< SY, Chiang PC, Tsai YH et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. https://doi.org/10.1016/j.joen.2010.04.015>
55. Bone Marrow Transplant 1997; 19(3): 283–7.
< Y, Yano T, Bessho A et al. The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. https://doi.org/10.1038/sj.bmt.1700644>
56. Cytotherapy 2002; 4(6): 551–5.
< C, Babatz J, Wagner I et al. Thawing of cryopreserved mobilized peripheral blood—comparison between waterbath and dry warming device. https://doi.org/10.1080/146532402761624719>
57. Transfusion 2013; 53(1): 85–90.
< E, Ortega S, Azgueta C et al. Thawing of cryopreserved hematopoietic progenitor cells from apheresis with a new dry-warming device. https://doi.org/10.1111/j.1537-2995.2012.03669.x>
58. Cytotherapy 2001; 3(5): 377–386.
< H, Acker JP, Hannon J et al. Damage and protection of UC blood cells during cryopreservation. https://doi.org/10.1080/146532401753277193>