Acta Med. 2017, 60: 108-113

https://doi.org/10.14712/18059694.2018.2

S100A4 Protein in Inflammatory Bowel Disease: Results of a Single Centre Prospective Study

Paula MorávkováaID, Darina KohoutováaID, Jaroslava Vávrováb, Jan BurešaID

aCharles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, 2nd Department of Internal Medicine – Gastroenterology, Hradec Králové, Czech Republic
bCharles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Institute of Clinical Biochemistry and Diagnostics, Hradec Králové, Czech Republic

Received September 19, 2017
Accepted October 21, 2017

References

1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142(1): 46–54. <https://doi.org/10.1053/j.gastro.2011.10.001>
2. Bures J, Horacek J, Pecka M, et al. Thrombocytes as an indicator of activity in Crohn’s disease treated with total parenteral and/or enteral nutrition. Vnitr Lek 1994; 40: 84–8. (Article in Czech).
3. Douda T, Bures J, Rejchrt S, Kopacova M, Pecka M, Maly J. Mean platelet volume in Crohn’s disease patients. Cas Lek Cesk 2006; 145: 870–3. (Article in Czech).
4. Kohoutova D, Pecka M, Cihak M, Cyrany J, Maly J, Bures J. Prevalence of hypercoagulable disorders in inflammatory bowel disease. Scand J Gastroenterol 2014; 49(3): 287–94. <https://doi.org/10.3109/00365521.2013.870597>
5. Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis 2004; 10: 661–5. <https://doi.org/10.1097/00054725-200409000-00026>
6. Fagan EA, Dyck RF, Maton PN, Hodgson HJ, Chadwick VS, Petrie A, Pepys MB. Serum levels of C-reactive protein in Crohn’s disease and ulcerative colitis. Eur J Clin Invest 1982; 12: 351–9. <https://doi.org/10.1111/j.1365-2362.1982.tb02244.x>
7. Chamouard P, Richert Z, Meyer N, Rahmi G, Baumann R. Diagnostic value of C-reactive protein for predicting activity level of Crohn’s disease. Clin Gastroenterol Hepatol 2006; 4: 882–7. <https://doi.org/10.1016/j.cgh.2006.02.003>
8. Xiong Y, Wang GZ, Zhou JQ, Xia BQ, Wang XY, Jiang B. Serum antibodies to microbial antigens for Crohn’s disease progression: a meta- analysis. Eur J Gastroenterol Hepatol 2014; 26(7): 733–42. <https://doi.org/10.1097/MEG.0000000000000102>
9. Mow WS, Vasiliauskas EA, Lin YC, et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 2004; 126(2): 414–424. <https://doi.org/10.1053/j.gastro.2003.11.015>
10. Pintér M, Pintérová KM, Drahosová M, et al. Cas Lek Cesk 2007; 146(11): 863–7. (Article in Czech).
11. Targan SR, Landers CJ, Yang H, et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 2005; 128(7): 2020–2028. <https://doi.org/10.1053/j.gastro.2005.03.046>
12. Kohoutova D, Drahosova M, Moravkova P, Rejchrt S, Bures J. Anti-Outer membrane protein C and anti-glycoprotein 2 antibodies in inflammatory bowel disease and their association with complicated forms of Crohn’s disease. BMC Gastroenterol 2014; 14: 190. <https://doi.org/10.1186/s12876-014-0190-1> <PubMed>
13. Rump JA, Schölmerich J, Gross V, et al. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn’s disease. Immunobiology 1990; 181(4–5): 406–413. <https://doi.org/10.1016/S0171-2985(11)80509-7>
14. Muller-Ladner U, Gross V, Andus T, et al. Distinct patterns of immunoglobulin classes and IgG subclasses of autoantibodies in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 1996; 8: 579–584. <https://doi.org/10.1097/00042737-199606000-00016>
15. Rejchrt S, Drahosová M, Kopácová M, et al. Antilaminaribioside and antichitobioside antibodies in inflammatory bowel disease. Folia Microbiol (Praha) 2008; 53(4): 373–6. <https://doi.org/10.1007/s12223-008-0058-2>
16. Moravkova P, Kohoutova D, Rejchrt S, Cyrany J, Bures J. Role of S100 Proteins in Colorectal Carcinogenesis. Gastroenterol Res Pract 2016; 2016: 2632703. <https://doi.org/10.1155/2016/2632703> <PubMed>
17. Lopez RN, Leach ST, Lemberg DA, Duvoisin G, Gearry RB, Day AS. Faecal Biomarkers in Inflammatory Bowel Disease. J Gastroenterol Hepatol 2016. doi: 10.1111/jgh.13611. (Epub ahead of print). <https://doi.org/10.1111/jgh.13611>
18. Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322(4): 1111–22. <https://doi.org/10.1016/j.bbrc.2004.07.096>
19. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/ A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170(6): 3233–42. <https://doi.org/10.4049/jimmunol.170.6.3233>
20. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97(7): 889–901. <https://doi.org/10.1016/S0092-8674(00)80801-6>
21. Wright EK, Kamm MA, De Cruz P, et al. Comparison of Fecal Inflammatory Markers in Crohn’s Disease. Inflamm Bowel Dis 2016; 22(5): 1086–94. <https://doi.org/10.1097/MIB.0000000000000671>
22. Cozijnsen MA, van Pieterson M, Samsom JN, Escher JC, de Ridder L. Top-down Infliximab Study in Kids with Crohn’s disease (TISKids): an international multicentre randomised controlled trial. BMJ Open Gastroenterol 2016; 3(1): e000123. <https://doi.org/10.1136/bmjgast-2016-000123> <PubMed>
23. Chatzikonstantinou M, Konstantopoulos P, Stergiopoulos S, et al. Calprotectin as a diagnostic tool for inflammatory bowel diseases. Biomed Rep 2016; 5(4): 403–407. <https://doi.org/10.3892/br.2016.751> <PubMed>
24. Korndörfer IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J Mol Biol 2007; 370(5): 887–98. <https://doi.org/10.1016/j.jmb.2007.04.065>
25. Schmidt-Hansen B, Ornås D, Grigorian M, et al. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 2004; 23(32): 5487–95. <https://doi.org/10.1038/sj.onc.1207720>
26. Boye K, Nesland JM, Sandstad B, Mælandsmo GM, Flatmark K. Nuclear S100A4 is a novel prognostic marker in colorectal cancer. Eur J Cancer 2010; 46(16): 2919–25. <https://doi.org/10.1016/j.ejca.2010.07.013>
27. Sack U, Stein U. Want up your mind – intervention strategies for S100A4-induced metastasis in colon cancer. Gen Physiol Biophys 2009; 28: F55–64.
28. Tamaki Y, Iwanaga Y, Niizuma S, et al. Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts. J Mol Cell Cardiol 2013; 57: 72–81. <https://doi.org/10.1016/j.yjmcc.2013.01.007>
29. Louka ML, Ramzy MM. Involvement of fibroblast-specific protein 1 (S100A4) and matrix metalloproteinase-13 (MMP-13) in CCl4-induced reversible liver fibrosis. Gene 2016; 579(1): 29–33. <https://doi.org/10.1016/j.gene.2015.12.042>
30. Cunningham MF, Docherty NG, Burke JP, O’Connell PR. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn’s disease and promotes intestinal fibroblast migration. Am J Physiol Gastrointest Liver Physiol 2010; 299(2): G457–66. <https://doi.org/10.1152/ajpgi.00351.2009>
31. Cerezo LA, Remáková M, Tomčik M, et al. The metastasis-associated protein S100A4 promotes the inflammatory response of mononuclear cells via the TLR4 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford) 2014; 53(8): 1520–6. <https://doi.org/10.1093/rheumatology/keu031>
32. Fernandes P, MacSharry J, Darby T, et al. Differential expression of key regulators of Toll-like receptors in ulcerative colitis and Crohn’s disease: a role for Tollip and peroxisome proliferator-activated receptor gamma? Clin Exp Immunol 2016; 183(3): 358–68. <https://doi.org/10.1111/cei.12732> <PubMed>
33. Cario E. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 2010; 16(9): 1583–97. <https://doi.org/10.1002/ibd.21282> <PubMed>
34. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 2005; 19 Suppl A: 5A–36A. <https://doi.org/10.1155/2005/269076>
35. Erlandsson MC, Forslind K, Andersson SE, Lund A, Bokarewa MI. Metastasin S100A4 is increased in proportion to radiographic damage in patients with RA. Rheumatology (Oxford) 2012; 51(5): 932–40. <https://doi.org/10.1093/rheumatology/ker362>
36. Ebralidze A, Tulchinsky E, Grigorian M, et al. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev 1989; 3(7): 1086–93. <https://doi.org/10.1101/gad.3.7.1086>
37. Liu Y, Tang W, Wang J, et al. Clinicopathological and prognostic significance of S100A4 overexpression in colorectal cancer: a meta-analysis. Diagn Pathol 2013; 8: 181. <https://doi.org/10.1186/1746-1596-8-181> <PubMed>
38. Grigorian M, Ambartsumian N, Lukanidin E. Metastasis-inducing S100A4 protein: implication in non-malignant human pathologies. Curr Mol Med 2008; 8(6): 492–6. <https://doi.org/10.2174/156652408785747942>
39. Cerezo LA, Kuncová K, Mann H, et al. The metastasis promoting protein S100A4 is increased in idiopathic inflammatory myopathies. Rheumatology (Oxford) 2011; 50(10): 1766–72. <https://doi.org/10.1093/rheumatology/ker218>
40. Tambuwala MM. Natural Nuclear Factor Kappa Beta Inhibitors: Safe Therapeutic Options for Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22(3): 719–23. <https://doi.org/10.1097/MIB.0000000000000655>
41. Doroudgar S, Quijada P, Konstandin M, et al. S100A4 protects the myocardium against ischemic stress. J Mol Cell Cardiol 2016; 100: 54–63. <https://doi.org/10.1016/j.yjmcc.2016.10.001> <PubMed>
42. Schneider M, Kostin S, Strøm CC, et al. S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc Res 2007; 75(1): 40–50. <https://doi.org/10.1016/j.cardiores.2007.03.027>
43. Axelrad JE, Lichtiger S, Yajnik V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J Gastroenterol 2016; 22(20): 4794–801. <https://doi.org/10.3748/wjg.v22.i20.4794> <PubMed>
44. Yan LB, Zhang QB, Zhu X, He M, Tang H. Serum S100 calcium binding protein A4 improves the diagnostic accuracy of transient elastography for assessing liver fibrosis in hepatitis B. Clin Res Hepatol Gastroenterol 2017; S2210–7401(17): 30144–4.
45. Chen L, Li J, Zhang J, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 2015; 62(1): 156–64. <https://doi.org/10.1016/j.jhep.2014.07.035>
46. Burock S, Herrmann P, Wendler I, Niederstrasser M, Wernecke KD, Stein U. Circulating Metastasis Associated in Colon Cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World J Gastroenterol 2015; 21(1): 333–41. <https://doi.org/10.3748/wjg.v21.i1.333> <PubMed>
47. Stein U, Burock S, Herrmann P, Wendler I, et al. Diagnostic and prognostic value of metastasis inducer S100A4 transcripts in plasma of colon, rectal, and gastric cancer patients. J Mol Diagn 2011; 13(2): 189–98. <https://doi.org/10.1016/j.jmoldx.2010.10.002> <PubMed>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive