Acta Med. 2017, 60: 37-43

https://doi.org/10.14712/18059694.2017.45

The Evaluation of Benefit of Newly Prepared Reversible Inhibitors of Acetylcholinesterase and Commonly Used Pyridostigmine as Pharmacological Pretreatment of Soman-Poisoned Mice

Jiří Kassa, Jan Korábečný, Eugenie Nepovimová

Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic

Received January 17, 2017
Accepted March 9, 2017

References

1. Yanagisawa N, Morita H, Nakajima T. Sarin experience in Japan. Acute toxicity and long-term effects. J Neurol Sci 2006; 249: 76–85. <https://doi.org/10.1016/j.jns.2006.06.007>
2. Bajgar J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. Adv Clin Chem 2004; 38: 151–216. <https://doi.org/10.1016/S0065-2423(04)38006-6>
3. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol 2013; 11: 315–35. <https://doi.org/10.2174/1570159X11311030006> <PubMed>
4. Jokanovic M, Prostran, M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 2009; 16: 2177–88. <https://doi.org/10.2174/092986709788612729>
5. Kassa, J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol 2002; 40: 803–16. <https://doi.org/10.1081/CLT-120015840>
6. Shih TM. Comparison of several oximes on reactivation of soman-induced blood, brain and tissue cholinesterase activity in rats. Arch Toxicol 1993; 67: 637–46. <https://doi.org/10.1007/BF01974071>
7. Lorke DE, Kalasz H, Petroianu GA, Tekes K. Entry of oximes into the brain: A review. Curr Med Chem 2008; 15: 743–53. <https://doi.org/10.2174/092986708783955563>
8. Zdarova Karasova J, Zemek F, Bajgar J et al. Partition of bispyridinium oximes (trimedoxime, K074) administered in therapeutic doses into different parts of the rat brain. J Pharm Biomed Anal 2011; 54: 1082–7. <https://doi.org/10.1016/j.jpba.2010.11.024>
9. Bajgar J, Fusek J, Kassa J, Kuca K, Jun D. Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Curr Med Chem 2009; 16: 2977–86. <https://doi.org/10.2174/092986709788803088>
10. Layish I, Krivoy A, Rotman E, Finkelstein A, Tashma Z, Yehezkelli Y. Pharmacologic prophylaxis against nerve agent poisoning. Isr Med Assoc J 2005; 7: 182–7.
11. Patocka J, Jun D, Bajgar J, Kuca K. Prophylaxis against nerve agent intoxication. Def Sci J 2006; 56: 775–84. <https://doi.org/10.14429/dsj.56.1941>
12. Kassa J, Koupilova M., Herink J, Vachek J. The long term influence of low-level sarin exposure on behavioral and neurophysiological functions in rat. Acta Medica (Hradec Kralove) 2001; 44: 21–7.
13. Tallarida R, Murray R. Manual of Pharmacological Calculation with Computer Programs, New York: Springer-Verlag, 1987.
14. Mercey G, Verdelet T, Renou J et al. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res 2012; 45: 756–66. <https://doi.org/10.1021/ar2002864>
15. Antonijevic B, Stojiljkovic MP. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin Med Res 2007; 5: 71–82. <https://doi.org/10.3121/cmr.2007.701> <PubMed>
16. Marrs TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol Rev 2006; 25: 297–323. <https://doi.org/10.2165/00139709-200625040-00009>
17. Lorke DE, Hasan MY, Nurulain SM, Shafiullah M, Kuca K, Petroianu GA. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: assessment using methyl-paraoxon. CNS Neurol Dis Drug Targets 2012; 11: 1052–60. <https://doi.org/10.2174/1871527311211080016>
18. Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hanninen O. Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. Toxicology 1999; 134: 169–78. <https://doi.org/10.1016/S0300-483X(99)00029-3>
19. Gordon RK, Haigh JR, Garcia GE, Feaster SR, Riel MA, Lenz DE. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex in vivo exposure to soman. Chem-Biol Interact 2005; 157: 239–46. <https://doi.org/10.1016/j.cbi.2005.10.031>
20. Komloova M, Musilek K, Dolezal M, Gunn-Moore F, Kuca K. Structure- activity relationship of quaternary acetylcholinesterase inhibitors – outlook for early myasthenia gravis treatment. Curr Med Chem 2010; 17: 1810–24. <https://doi.org/10.2174/092986710791111198>
21. Maxwell DM, Brecht KM, Doctor BP, Wolfe AD. Comparison of antidote protection against soman by pyridostigmine, HI-6 and acetylcholinesterase. J Pharmacol Exp Therap 1993; 264: 1085–9.
22. Fusek J, Bajgar J, Merka V. Prophylaxe von Vergiftungen mit Nervenkampfstoffen (Ergebnisse einer klinischen Studie). Koord Sanitatsdienst 2006; 24: 48–53.
23. Wenger B, Quigley MD, Kokla MA. Seven-day pyridostigmine administration and thermoregulation during rest and exercise in dry heat. Aviation Space Environ Med 1993; 64: 905–11.
24. Kassa J, Vachek J. A comparison of the efficacy of pyridostigmine alone and the combination of pyridostigmine with anticholinergic drugs as pharmacological pretreatment of tabun-poisoned rats and mice. Toxicology 2002; 177: 179–85. <https://doi.org/10.1016/S0300-483X(02)00219-6>
25. Dunn MA, Hackley BE, Sidell FR. Pretreatment for nerve agent exposure In: Zajtchuk R, Bellamy RF, eds. Textbook of Military Medicine: Medical Aspects of Chemical & Biological Warfare, Washington DC: Office of the Surgeon General, Department of the Army, 1997: 181–96.
26. Myhrer T, Aas P. Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Neurosci Biobehav Rev 2016; 71: 657–70. <https://doi.org/10.1016/j.neubiorev.2016.10.017>
27. Abou-Donia MB, Goldstein LB, Jones KH et al. Locomotor and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET, and permethrin, alone and in combination. Toxicol Sci 2001; 60: 305–14. <https://doi.org/10.1093/toxsci/60.2.305>
28. Kassa J, Musilek K, Koomlova M., Bajgar J. A comparison of the efficacy of newly developed reversible inhibitors of acetylcholinesterase with commonly used pyridostigmine as pharmacological pre-treatment of soman-poisoned mice. Bas Clin Pharmacol Toxicol 2012; 110: 322–6. <https://doi.org/10.1111/j.1742-7843.2011.00808.x>
29. Lorke DE, Hasan MY, Nurulain SM, Shafiullah M, Kuca K, Petroianu GA. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. J Appl Toxicol 2011; 31: 515–23. <https://doi.org/10.1002/jat.1589>
30. Petroianu GA, Hasan MY, Nurulain SM, Arafat K, Sheen R, Nagelkerke N. Comparison of two pre-exposure treatment regimens in acute organophosphate (paraoxon) poisoning in rats: tiapride vs pyridostigmine. Toxicol Appl Pharmacol 2007; 219: 235–40. <https://doi.org/10.1016/j.taap.2006.09.002>
31. Petroianu GA, Nurulain SM, Shafiullah M, Hasan MY, Kuca K, Lorke DE. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using paraoxon. J Appl Toxicol 2013; 33: 894–900. <https://doi.org/10.1002/jat.2760>
32. Komloova M, Musilek K, Horova A et al. Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors-implications for early Myasthenia gravis treatment. Bioorg Med Chem Lett 2011; 21: 505–9. <https://doi.org/10.1016/j.bmcl.2011.02.047>
33. Korabecny J, Musilek O, Holas O et al. Synthesis and in vitro evaluation of N-(bromobut-3-en-7-yl)-7-methoxy-1,2,3,4-tetrahydroacridine- 9-amine as a cholinesterase inhibitor with regard to Alzheimer ʼs disease treatment. Molecules 2010; 15: 8804–12. <https://doi.org/10.3390/molecules15128804> <PubMed>
34. Spilovska K, Korabecny J, Kral J et al. 7-methoxy-tacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimerʼs disease treatment – synthesis, biological evaluation and molecular modeling studies. Molecules 2013; 18: 2397–418. <https://doi.org/10.3390/molecules18022397> <PubMed>
35. Davis KL, Powchik P. Tacrine. Lancet 1995; 345: 625–30. <https://doi.org/10.1016/S0140-6736(95)90526-X>
36. Gracon SI, Berghoff WG. Cholinesterase inhibition in the treatment of Alzheimerʼs disease: further evaluation of the clinical effects of tacrine. In Brioni JD, Decker MW, eds. Pharmacological Treatment of Alzheimerʼs Disease. Molecular and Neurobiological Foundations. New York: Wiley-Liss Inc, 1997: 389–408.
37. Recanatini M, Cavalli A, Belluti F et al. SAR of 9-amino-1,2,3,4-tetrahydroacridine- based acetycholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR and structure-based CoMFA of tacrine analogues. J Med Chem 2000; 43: 2007–18. <https://doi.org/10.1021/jm990971t>
38. Szymański P, Markowicz M, Mikiciuk-Olasik E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg Chem 2011; 39: 138–42. <https://doi.org/10.1016/j.bioorg.2011.05.001>
39. Zemek F, Drtinova L, Nepovimova E et al. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf 2014; 13: 759–74.
40. Nepovimova E, Korabecny J, Dolezal R et al. Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 2015; 58: 8985–9003. <https://doi.org/10.1021/acs.jmedchem.5b01325>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive