Acta Med. 2017, 60: 37-43
https://doi.org/10.14712/18059694.2017.45
The Evaluation of Benefit of Newly Prepared Reversible Inhibitors of Acetylcholinesterase and Commonly Used Pyridostigmine as Pharmacological Pretreatment of Soman-Poisoned Mice
References
1. J Neurol Sci 2006; 249: 76–85.
< N, Morita H, Nakajima T. Sarin experience in Japan. Acute toxicity and long-term effects. https://doi.org/10.1016/j.jns.2006.06.007>
2. Adv Clin Chem 2004; 38: 151–216.
< J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. https://doi.org/10.1016/S0065-2423(04)38006-6>
3. Curr Neuropharmacol 2013; 11: 315–35.
< MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. https://doi.org/10.2174/1570159X11311030006>
<PubMed>
4. Curr Med Chem 2009; 16: 2177–88.
< M, Prostran, M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. https://doi.org/10.2174/092986709788612729>
5. J Toxicol Clin Toxicol 2002; 40: 803–16.
< , J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. https://doi.org/10.1081/CLT-120015840>
6. Arch Toxicol 1993; 67: 637–46.
< TM. Comparison of several oximes on reactivation of soman-induced blood, brain and tissue cholinesterase activity in rats. https://doi.org/10.1007/BF01974071>
7. Curr Med Chem 2008; 15: 743–53.
< DE, Kalasz H, Petroianu GA, Tekes K. Entry of oximes into the brain: A review. https://doi.org/10.2174/092986708783955563>
8. J Pharm Biomed Anal 2011; 54: 1082–7.
< J, Zemek F, Bajgar J et al. Partition of bispyridinium oximes (trimedoxime, K074) administered in therapeutic doses into different parts of the rat brain. https://doi.org/10.1016/j.jpba.2010.11.024>
9. Curr Med Chem 2009; 16: 2977–86.
< J, Fusek J, Kassa J, Kuca K, Jun D. Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. https://doi.org/10.2174/092986709788803088>
10. Isr Med Assoc J 2005; 7: 182–7.
I, Krivoy A, Rotman E, Finkelstein A, Tashma Z, Yehezkelli Y. Pharmacologic prophylaxis against nerve agent poisoning.
11. Def Sci J 2006; 56: 775–84.
< J, Jun D, Bajgar J, Kuca K. Prophylaxis against nerve agent intoxication. https://doi.org/10.14429/dsj.56.1941>
12. Acta Medica (Hradec Kralove) 2001; 44: 21–7.
J, Koupilova M., Herink J, Vachek J. The long term influence of low-level sarin exposure on behavioral and neurophysiological functions in rat.
13. Tallarida R, Murray R. Manual of Pharmacological Calculation with Computer Programs, New York: Springer-Verlag, 1987.
14. Acc Chem Res 2012; 45: 756–66.
< G, Verdelet T, Renou J et al. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. https://doi.org/10.1021/ar2002864>
15. Clin Med Res 2007; 5: 71–82.
< B, Stojiljkovic MP. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. https://doi.org/10.3121/cmr.2007.701>
<PubMed>
16. Toxicol Rev 2006; 25: 297–323.
< TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. https://doi.org/10.2165/00139709-200625040-00009>
17. CNS Neurol Dis Drug Targets 2012; 11: 1052–60.
< DE, Hasan MY, Nurulain SM, Shafiullah M, Kuca K, Petroianu GA. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: assessment using methyl-paraoxon. https://doi.org/10.2174/1871527311211080016>
18. Toxicology 1999; 134: 169–78.
< K, Kaliste-Korhonen E, Raushel FM, Hanninen O. Success of pyridostigmine, physostigmine, eptastigmine and phosphotriesterase treatments in acute sarin intoxication. https://doi.org/10.1016/S0300-483X(99)00029-3>
19. Chem-Biol Interact 2005; 157: 239–46.
< RK, Haigh JR, Garcia GE, Feaster SR, Riel MA, Lenz DE. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex in vivo exposure to soman. https://doi.org/10.1016/j.cbi.2005.10.031>
20. Curr Med Chem 2010; 17: 1810–24.
< M, Musilek K, Dolezal M, Gunn-Moore F, Kuca K. Structure- activity relationship of quaternary acetylcholinesterase inhibitors – outlook for early myasthenia gravis treatment. https://doi.org/10.2174/092986710791111198>
21. J Pharmacol Exp Therap 1993; 264: 1085–9.
DM, Brecht KM, Doctor BP, Wolfe AD. Comparison of antidote protection against soman by pyridostigmine, HI-6 and acetylcholinesterase.
22. Koord Sanitatsdienst 2006; 24: 48–53.
J, Bajgar J, Merka V. Prophylaxe von Vergiftungen mit Nervenkampfstoffen (Ergebnisse einer klinischen Studie).
23. Aviation Space Environ Med 1993; 64: 905–11.
B, Quigley MD, Kokla MA. Seven-day pyridostigmine administration and thermoregulation during rest and exercise in dry heat.
24. Toxicology 2002; 177: 179–85.
< J, Vachek J. A comparison of the efficacy of pyridostigmine alone and the combination of pyridostigmine with anticholinergic drugs as pharmacological pretreatment of tabun-poisoned rats and mice. https://doi.org/10.1016/S0300-483X(02)00219-6>
25. Dunn MA, Hackley BE, Sidell FR. Pretreatment for nerve agent exposure In: Zajtchuk R, Bellamy RF, eds. Textbook of Military Medicine: Medical Aspects of Chemical & Biological Warfare, Washington DC: Office of the Surgeon General, Department of the Army, 1997: 181–96.
26. Neurosci Biobehav Rev 2016; 71: 657–70.
< T, Aas P. Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? https://doi.org/10.1016/j.neubiorev.2016.10.017>
27. Toxicol Sci 2001; 60: 305–14.
< MB, Goldstein LB, Jones KH et al. Locomotor and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET, and permethrin, alone and in combination. https://doi.org/10.1093/toxsci/60.2.305>
28. Bas Clin Pharmacol Toxicol 2012; 110: 322–6.
< J, Musilek K, Koomlova M., Bajgar J. A comparison of the efficacy of newly developed reversible inhibitors of acetylcholinesterase with commonly used pyridostigmine as pharmacological pre-treatment of soman-poisoned mice. https://doi.org/10.1111/j.1742-7843.2011.00808.x>
29. J Appl Toxicol 2011; 31: 515–23.
< DE, Hasan MY, Nurulain SM, Shafiullah M, Kuca K, Petroianu GA. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. https://doi.org/10.1002/jat.1589>
30. Toxicol Appl Pharmacol 2007; 219: 235–40.
< GA, Hasan MY, Nurulain SM, Arafat K, Sheen R, Nagelkerke N. Comparison of two pre-exposure treatment regimens in acute organophosphate (paraoxon) poisoning in rats: tiapride vs pyridostigmine. https://doi.org/10.1016/j.taap.2006.09.002>
31. J Appl Toxicol 2013; 33: 894–900.
< GA, Nurulain SM, Shafiullah M, Hasan MY, Kuca K, Lorke DE. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using paraoxon. https://doi.org/10.1002/jat.2760>
32. Bioorg Med Chem Lett 2011; 21: 505–9.
< M, Musilek K, Horova A et al. Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors-implications for early Myasthenia gravis treatment. https://doi.org/10.1016/j.bmcl.2011.02.047>
33. Molecules 2010; 15: 8804–12.
< J, Musilek O, Holas O et al. Synthesis and in vitro evaluation of N-(bromobut-3-en-7-yl)-7-methoxy-1,2,3,4-tetrahydroacridine- 9-amine as a cholinesterase inhibitor with regard to Alzheimer ʼs disease treatment. https://doi.org/10.3390/molecules15128804>
<PubMed>
34. Molecules 2013; 18: 2397–418.
< K, Korabecny J, Kral J et al. 7-methoxy-tacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimerʼs disease treatment – synthesis, biological evaluation and molecular modeling studies. https://doi.org/10.3390/molecules18022397>
<PubMed>
35. Lancet 1995; 345: 625–30.
< KL, Powchik P. Tacrine. https://doi.org/10.1016/S0140-6736(95)90526-X>
36. Gracon SI, Berghoff WG. Cholinesterase inhibition in the treatment of Alzheimerʼs disease: further evaluation of the clinical effects of tacrine. In Brioni JD, Decker MW, eds. Pharmacological Treatment of Alzheimerʼs Disease. Molecular and Neurobiological Foundations. New York: Wiley-Liss Inc, 1997: 389–408.
37. J Med Chem 2000; 43: 2007–18.
< M, Cavalli A, Belluti F et al. SAR of 9-amino-1,2,3,4-tetrahydroacridine- based acetycholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR and structure-based CoMFA of tacrine analogues. https://doi.org/10.1021/jm990971t>
38. Bioorg Chem 2011; 39: 138–42.
< P, Markowicz M, Mikiciuk-Olasik E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. https://doi.org/10.1016/j.bioorg.2011.05.001>
39. Expert Opin Drug Saf 2014; 13: 759–74.
F, Drtinova L, Nepovimova E et al. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine.
40. J Med Chem 2015; 58: 8985–9003.
< E, Korabecny J, Dolezal R et al. Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. https://doi.org/10.1021/acs.jmedchem.5b01325>