Acta Med. 2017, 60: 12-18
https://doi.org/10.14712/18059694.2017.43
The Osteogenic Potential of Human Nondifferentiated and Pre-differentiated Mesenchymal Stem Cells Combined with an Osteoconductive Scaffold – Early Stage Healing
References
1. AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012; 40: 363–408.
<https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10>
2. AR, Laurencin CT, Nukavarapu SP. Differential analysis of peripheral blood‐ and bone marrow‐derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res 2012; 30: 1507–1515.
<https://doi.org/10.1002/jor.22097>
3. B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98: 1317–1375.
<https://doi.org/10.1002/jps.21528>
4. J, Welti M, Hemmi S, Neuenschwander P, Baltes C, Giovanoli P, Rudin M, Calcagni M. Three-dimensional co-cultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts. Tissue Eng Pt A 2010; 17: 291–299.
<https://doi.org/10.1089/ten.tea.2010.0278>
5. R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011; 9: 66.
<https://doi.org/10.1186/1741-7015-9-66>
<PubMed>
6. NE, Haverslag RT, Dhert WJ, Alblas J. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng Pt A 2010; 16: 2355–2367.
<https://doi.org/10.1089/ten.tea.2009.0603>
7. AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Sur 1995; 3: 1–8.
<https://doi.org/10.5435/00124635-199501000-00001>
8. S, Chen S, Wang CY, Robey PG, Shi S. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 2003; 18: 716–22.
<https://doi.org/10.1359/jbmr.2003.18.4.716>
9. V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474–5491.
<https://doi.org/10.1016/j.biomaterials.2005.02.002>
10. P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014; 100: 107–112.
<https://doi.org/10.1016/j.otsr.2013.11.010>
11. K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B 2007; 82: 471–480.
<https://doi.org/10.1002/jbm.b.30752>
12. H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Max Surg 2001; 30: 531–537.
<https://doi.org/10.1054/ijom.2001.0164>
13. PN, Johnson EO, Babis G. An update on recent advances in bone regeneration. Injury 2008; 39: 1–4.
<https://doi.org/10.1016/j.injury.2008.05.013>
14. AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 2003; 12: 295–310.
<https://doi.org/10.1016/S1054-8807(03)00089-9>
15. G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006; 12: 3209–3221.
<https://doi.org/10.1089/ten.2006.12.3209>


