Acta Med. 2016, 59: 124-132
https://doi.org/10.14712/18059694.2017.39
Fibroblast Growth Factor-1 Suppresses TGF-β-Mediated Myofibroblastic Differentiation of Rat Hepatic Stellate Cells
References
1. Journal of Molecular and Cellular Cardiology 2013; 54: 45–52.
< RK, Thoppil RJ, Luther DJ, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. https://doi.org/10.1016/j.yjmcc.2012.10.016>
<PubMed>
2. The American Journal of Pathology 1999; 154: 871–882.
< PD, Narani N, McCulloch CAG. The Compliance of Collagen Gels Regulates Transforming Growth Factor-β Induction of α-Smooth Muscle Actin in Fibroblasts. https://doi.org/10.1016/S0002-9440(10)65334-5>
3. Journal of Clinical Investigation 2005; 115: 209–218.
< R, Brenner DA. Liver fibrosis. https://doi.org/10.1172/JCI24282>
<PubMed>
4. World Journal of Gastroenterology 2012; 18: 727–35.
< V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. https://doi.org/10.3748/wjg.v18.i8.727>
<PubMed>
5. Proceedings of the National Academy of Sciences of the United States of America 1991; 88: 6642–6646.
< TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. https://doi.org/10.1073/pnas.88.15.6642>
<PubMed>
6. Digestive and Liver Disease 2005; 37: 349–356.
< G, Morini S, Corradini SG, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. https://doi.org/10.1016/j.dld.2004.11.009>
7. Current Opinion in Cell Biology 2014; 31: 56–66.
< R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial–mesenchymal transition. https://doi.org/10.1016/j.ceb.2014.09.001>
<PubMed>
8. Frontiers Bioscience 2002; 7: 793–807.
< AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. https://doi.org/10.2741/A812>
9. Annual Review of Cell and Developmental Biology 2010; 26: 335–361.
< F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. https://doi.org/10.1146/annurev.cellbio.042308.113318>
10. Trends in Cell Biology 2003; 13: 264–269.
< F. Fibroblast biology in three-dimensional collagen matrices. https://doi.org/10.1016/S0962-8924(03)00057-6>
11. Journal of Gastroenterology and Hepatology 2006; 21(suppl 3): S88–S91.
< YP. Matrix metalloproteinases, the pros and cons, in liver fibrosis. https://doi.org/10.1111/j.1440-1746.2006.04586.x>
<PubMed>
12. The International Journal of Biochemistry & Cell Biology 2014; 47: 1–10.
< C, Day ML, Poronnik P, Pollock CA, Che XM. Inhibition of KCa3. 1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. https://doi.org/10.1016/j.biocel.2013.11.017>
13. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 2013; 1832: 876–83.
< JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. https://doi.org/10.1016/j.bbadis.2012.11.002>
14. The Journal of Cell Biology 1994; 127: 2037–2048.
< WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. https://doi.org/10.1083/jcb.127.6.2037>
<PubMed>
15. Physiological Research 2013; 62: 15–25.
A, Peterova E, Bittnerova L, et al. Collagenolytic potential of rat liver myofibroblasts.
16. Journal of Hepatology 2004; 41: 60–66.
< KK, Rogers DD, Wyatt TA, Sorrell MF, Tuma DJ. Transforming growth factor-β induces contraction of activated hepatic stellate cells. https://doi.org/10.1016/j.jhep.2004.03.019>
17. Kim SJ, Ballock RT. Cellular and molecular biology of Transforming Growth Factors. In: Nosa M. Cellular and Molecular Biology of Bone 2014; 98: 122.
18. Journal of Hepatology 1999; 30:48–60.
< T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-α and TGF-β1. https://doi.org/10.1016/S0168-8278(99)80007-5>
19. Molecular Cancer Research 2006; 4: 209–220.
< HJ, Park MJ, Cho H, et al. Transforming growth factor-β1 induces tissue inhibitor of metalloproteinase-1 expression via activation of extracellular signal-regulated kinase and Sp1 in human fibrosarcoma cells. https://doi.org/10.1158/1541-7786.MCR-05-0140>
20. International Journal of Scientific Engineering and Technology 2015; 4: 567–72.
< EO, Sui C, Omwandho CO, Tinneberg HR, Konrad L. Transforming Growth Factor Betas induce MMP-2 and MMP-9 Secretion via Smad-dependent Signaling in Human Endometrial and Endometriotic Cells. https://doi.org/10.17950/ijset/v4s12/1205>
21. Wound Repair and Regeneration 2014; 22: 125–33.
< JH, Kim YM, Kim BS, Kim J. H, Kim MB, Ko HC. Simvastatin inhibits transforming growth factor‐β1‐induced expression of type I collagen, CTGF, and α‐SMA in keloid fibroblasts. https://doi.org/10.1111/wrr.12136>
22. Physiological Research 2016; 65: 661–72.
E, Mrkvicová A, Podmolíková L, Řezáčová M, Kanta J. The role of cytokines TGF-beta1 and FGF-1 in the expression of characteristic markers of rat liver myofibroblasts cultured in three-dimensional collagen gel.
23. Journal of Cellular Physiology 2015; 230: 286–295.
< MK, Heidebrecht F, Nabi ME, Shah, N, Niculescu‐Duvaz I, Dockrell MEC. The regulation of TGF-β1 1 induced fibronectin EDA exon alternative splicing in human renal proximal tubule epithelial cells. https://doi.org/10.1002/jcp.24703>
24. American Journal of Physiology – Lung Cellular and Molecular Physiology 2010; 299: L222–L231.
< C, Becerril C, Montaño M, et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-β1 through MAPK/ERK kinase pathway. https://doi.org/10.1152/ajplung.00070.2010>
25. American Journal of Physiology – Lung Cellular and Molecular Physiology 2006; 291: L871–L879.
< C, Montaño M, Becerril C, et al. Acidic fibroblast growth factor decreases α-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. https://doi.org/10.1152/ajplung.00019.2006>
26. Frontiers Bioscience 2002; 7: 808–826.
< HL, Friedman SL. Activation of hepatic stellate cells – a key issue in liver fibrosis. https://doi.org/10.2741/reeves>
27. The Journal of Pathology 2016; 240: 197–210.
< C, Bellaye PS, Xia J, et al. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. https://doi.org/10.1002/path.4768>
28. Journal of Orthopaedic Research 2004; 22: 1050–57.
< M, Naruse T, Takagi M, Orui H, Ogino, T. Matrix metalloproteinase‐9 expression, tartrate‐resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones. https://doi.org/10.1016/j.orthres.2004.01.011>
29. The American Journal of Pathology 2015; 185: 2168–80.
< S, Viswanadhapalli S, Kopp JB, et al. Activation of AMP-Activated Protein Kinase Prevents TGF-β1-Induced Epithelial-Mesenchymal Transition and Myofibroblast Activation. https://doi.org/10.1016/j.ajpath.2015.04.014>
<PubMed>
30. Journal of Lipid Research 2000; 41: 882–893.
S, Piantedosi R, Frank J, et al. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro.
31. International Journal of Clinical and Experimental Pathology 2015; 8: 6828–34.
Y, Lin C, Ren Q, Liu Y, Yang X. Astragaloside effect on TGF-β1, SMAD2/3, and α-SMA expression in the kidney tissues of diabetic KKAy mice.
32. Inflammation 2003; 27: 9–19.
< FQ, Kohyama T, Sköld CM, et al. Glucocorticoids modulate TGF-β production by human fetal lung fibroblasts. https://doi.org/10.1023/A:1022683010976>
33. Biomaterials 2014; 35: 3744–55.
< J, Rnjak-Kovacina J, Du, Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. https://doi.org/10.1016/j.biomaterials.2013.12.078>
<PubMed>
34. Journal of Cellular and Molecular Medicine 2007; 11: 704–22.
< J, Gressner AM, Weiskirchen R. Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? https://doi.org/10.1111/j.1582-4934.2007.00060.x>
<PubMed>