Acta Med. 2016, 59: 75-78

https://doi.org/10.14712/18059694.2016.94

Droplet Digital PCR Analysis of GSTM1 Deletion Polymorphism in Psoriatic Subjects Treated with Goeckerman Therapy

Martin Beráneka,b, Zdeněk Fialac, Jan Kremláčekd, Ctirad Andrýse, Květoslava Hamákováf, Vladimír Paličkab, Lenka Borskád

aDepartment of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
bInstitute of Clinical Biochemistry and Diagnostics, Charles University Hospital and Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
cInstitute of Hygiene and Preventive Medicine, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
dInstitute of Pathological Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
eInstitute of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic
fClinic of Dermal and Venereal Diseases, Charles University Hospital Hradec Králové, Hradec Králové, Czech Republic

Received May 31, 2016
Accepted June 13, 2016

References

1. Moscaliuc ML, Heller MM, Lee ES, Koo J. Goeckerman therapy: a very effective, yet often forgotten treatment for severe generalized psoriasis. J Dermatolog Treat 2013; 24: 34–37. <https://doi.org/10.3109/09546634.2012.658014>
2. Borska L, Andrys C, Krejsek J, et al. Oxidative damage to nucleic acids and benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA adducts and chromosomal aberration in children with psoriasis repeatedly exposed to crude coal tar ointment and UV radiation. Oxid Med Cell Longev 2014; 302528: 1–10. <https://doi.org/10.1155/2014/302528> <PubMed>
3. Smith G, Ibbotson SH, Comrie MM, et al. Regulation of cutaneous drug-meta­bolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol 2006; 155: 275–281. <https://doi.org/10.1111/j.1365-2133.2006.07317.x>
4. Kato S, Bowman ED, Harrington AM, Blomeke B, Shields PG. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst 1995; 87: 902–907. <https://doi.org/10.1093/jnci/87.12.902>
5. Soderkvist P, Ahmadi A, Akerback A, Axelson O, Flodin U. Glutathione S-transferase M1 null genotype as a risk modifier for solvent-induced chronic toxic encephalopathy. Scandinavian Journal of Work, Environment & Health 1996; 22: 360–363. <https://doi.org/10.5271/sjweh.154>
6. Kerb R, Brockmoller J, Schlagenhaufer R, Sprenger R, Roots I, Brinkmann U. Influence of GSTT1 and GSTM1 genotypes on sunburn sensitivity. Am J Pharmacogenomics 2002; 2: 147–154. <https://doi.org/10.2165/00129785-200202020-00007>
7. Kelsey KT, Nelson HH, Wiencke JK, Smith CM, Levin S. The glutathione S-transferase theta and mu deletion polymorphisms in asbestosis. Am J Ind Med 1997; 31: 274–279. <https://doi.org/10.1002/(SICI)1097-0274(199703)31:3<274::AID-AJIM2>3.0.CO;2-Y>
8. Nakachi K, Imai K, Hayashi S, Kawajiri K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 1993; 53: 2994–2999.
9. Lear JT, Smith AG, Strange RC, Fryer AA. Detoxifying enzyme genotypes and susceptibility to cutaneous malignancy. Br J Dermatol 2000; 142: 8–15. <https://doi.org/10.1046/j.1365-2133.2000.03339.x>
10. Nørskov MS, Frikke-Schmidt R, Bojesen SE, Nordestgaard BG, Loft S, Tybjærg-Hansen A. Copy number variation in glutathione-S-transferase T1 and M1 predicts incidence and 5-year survival from prostate and bladder cancer, and incidence of corpus uteri cancer in the general population. Pharmacogenomics J 2011; 11: 292–299. <https://doi.org/10.1038/tpj.2010.38>
11. Brescia G, Celotti L, Clonfero E, et al. The influence of cytochrome P450 1A1 and glutathione S-transferase M1 genotypes on biomarker levels in coke-oven workers. Arch Toxicol 1999; 73: 431–439. <https://doi.org/10.1007/s002040050632>
12. Topinka J, Sevastyanova O, Binkova B, et al. Biomarkers of air pollution exposure: a study of policemen in Prague. Mutat Res 2007; 624: 9–17. <https://doi.org/10.1016/j.mrfmmm.2007.02.032>
13. Pastorelli R, Guanci M, Cerri A, et al. Impact of inherited polymorphisms in glutathione S-transferase M1, microsomal epoxide hydrolase, cytochrome P450 enzymes on DNA, and blood protein adducts of benzo(a)pyrene-diolepoxide. Cancer Epidemiol Biomarkers Prev 1998; 7: 703–709.
14. Roodi N, Dupont WD, Moore JH, Parl FF. Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk. Cancer Res 2004; 64: 1233–1236. <https://doi.org/10.1158/0008-5472.CAN-03-2861>
15. McLellan RA, Oscarson M, Alexandrie AK, et al. Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol 1997; 52: 958–965. <https://doi.org/10.1124/mol.52.6.958>
16. Marín F, García N, Muñoz X, et al. Simultaneous genotyping of GSTT1 and GSTM1 null polymorphisms by melting curve analysis in presence of SYBR Green I. J Mol Diagn 2010; 12: 300–304. <https://doi.org/10.2353/jmoldx.2010.090076> <PubMed>
17. Shi MM, Myrand SP, Bleavins MR, de la Iglesia FA. Highthroughput genotyping method for glutathione S-transferase T1 and M1 gene deletions using TaqMan probes. Res Commun Mol Pathol Pharmacol 1999; 103: 3–15.
18. Timofeeva M, Jäger B, Rosenberger A, et al. A multiplex real-time PCR method for detection of GSTM1 and GSTT1 copy numbers. Clin Biochem 2009; 42: 500–509. <https://doi.org/10.1016/j.clinbiochem.2008.12.011>
19. Bediaga NG, Alfonso-Sánchez MA, de Renobales M, Rocandio AM, Arroyo M, de Pancorbo MM. GSTT1 and GSTM1 gene copy number analysis in paraffin-embedded tissue using quantitative real-time PCR. Anal Biochem 2008; 378: 221–223. <https://doi.org/10.1016/j.ab.2008.04.010>
20. Borska L, Andrys C, Krejsek J, et al. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis. Int J Dermatol 2010; 49: 289–294. <https://doi.org/10.1111/j.1365-4632.2009.04258.x>
21. Machado ML, Beatty PW, Fetzer JC, Glickman AH, McGinnis EL. Evaluation of the relationship between PAH content and mutagenic activity of fumes from roofing and paving asphalts and coal tar pitch. Fundam Appl Toxicol 1993; 21: 492–499. <https://doi.org/10.1006/faat.1993.1125>
22. Topinka J, Binková B, Mracková G, et al. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat Res 1997; 390: 59–68. <https://doi.org/10.1016/S0165-1218(96)00166-8>
23. Thomson Reuters – Life Sciences Research. MetaCore™. Benzo[a]pyrene metabolism. http://lsresearch.thomsonreuters.com/maps/2304/. January 2015.
24. Trushin N, Alam S, El-Bayoumy K, et al. Comparative metabolism of benzo[a]pyrene by human keratinocytes infected with high-risk human papillomavirus types 16 and 18 as episomal or integrated genomes. J Carcinog 2012; 11: 1. <https://doi.org/10.4103/1477-3163.92309> <PubMed>
25. Smith G, Dawe RS, Clark C, et al. Quantitative real-time reverse transcription-polymerase chain reaction analysis of drug metabolizing and cytoprotective genes in psoriasis and regulation by ultraviolet radiation. J Invest Dermatol 2003; 121: 390–398. <https://doi.org/10.1046/j.1523-1747.2003.12354.x>
26. Nakajima T, Elovaara E, Anttila S, et al. Expression and polymorphism of glutathione S-transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis 1995; 16: 707–711. <https://doi.org/10.1093/carcin/16.4.707>
27. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445–600. <https://doi.org/10.3109/10409239509083491>
28. Vaury C, Lainé R, Noguiez P, et al. Human glutathione S-transferase M1 null genotype is associated with a high inducibility of cytochrome P450 1A1 gene transcription. Cancer Res 1995; 55: 5520–5523.
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive