Acta Med. 2016, 59: 59-63

https://doi.org/10.14712/18059694.2016.90

Effect of Intramuscular Injection on Oxidative Homeostasis in Laboratory Guinea Pig Model

Alžběta Kračmarováa, Hana Banďouchováb, Jiří Pikulab, Miroslav Pohankac

aDepartment of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
bDepartment of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
cDepartment of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic

Received January 19, 2016
Accepted April 7, 2016

References

1. Thomas RR, Khan SM, Smigrodzki RM, et al. RhTFAM treatment stimulates mitochondrial oxidative metabolism and improves memory in aged mice. Aging 2012; 4(9): 620–35. <https://doi.org/10.18632/aging.100488> <PubMed>
2. Valenzuela R, Khan SM, Smigrodzki RM, et al. N-3 long-chain polyunsaturated Fatty Acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS One 2012; 7(10): e46400. <https://doi.org/10.1371/journal.pone.0046400> <PubMed>
3. Baierle M, Nascimento SN, Moro AM, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev 2015; 2015: 804198.
4. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9: 124. <https://doi.org/10.3389/fncel.2015.00124> <PubMed>
5. Miller LE, McGinnis GR, Kliszczewicz B, et al. Blood oxidative stress markers during a high altitude trek. Int J Sport Nutr Exerc Metab 2013; 23(1): 65–72. <https://doi.org/10.1123/ijsnem.23.1.65>
6. Prasad SN, Muralidhara. Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster – Its amelioration with spice active enrichment: Relevance to neuropathy. Neurotoxicol 2012; 33(5): 1254–64. <https://doi.org/10.1016/j.neuro.2012.07.006>
7. Erman H, Guner I, Yaman MO, et al. The effects of fluoxetine on circulating oxidative damage parameters in rats exposed to aortic ischemia–reperfusion. Eur J Pharmacol 2015; 749: 56–61. <https://doi.org/10.1016/j.ejphar.2015.01.007>
8. Hagar H, El Medany A, Salamb R, El Medany G, Nayal OA. Betaine supplementation mitigates cisplatin-induced nephrotoxicity by abrogation of oxidative/nitrosative stress and suppression of inflammation and apoptosis in rats. Exp Toxicol Pathol 2015; 67: 133–41. <https://doi.org/10.1016/j.etp.2014.11.001>
9. Pohanka M, Hrabinova M, Zemek F, Drtinova L, Bandouchova H, Pikula J. Huperzine induces alteration in oxidative balance and antioxidants in a guinea pig model. Neuro Endocrinol Lett 2011; 32(suppl.): 95–100.
10. Al-Hasan YM, Evans LC, Pinkas GA, Dabkowski ER, Stanley WC, Thompson LP. Chronic hypoxia impairs cytochrome oxidase activity via oxidative stress in selected fetal guinea pig organs. Reprod Sci 2012; 20(3): 299–307. <https://doi.org/10.1177/1933719112453509> <PubMed>
11. Xie C, Kauffman J, Akar FG. Functional crosstalk between the mitochondrial PTP and KATP channels determine arrhythmic vulnerability to oxidative stress. Front Phisiol 2014; 5: 264.
12. Kim JCS. Ultrastructural studies of vascular and muscular changes in ascorbic acid deficient guinea-pigs. Lab Anim 1977; 11(2): 113–7. <https://doi.org/10.1258/002367777781005433>
13. Das A, Dey N, Ghosh A, Das S, Chattopadhyay DJ, Chatterjee IB. Molecular and cellular mechanisms of cigarette smoke-induced myocardial injury: Prevention by vitamin C. PLoS One 2012; 7(9): e44151. <https://doi.org/10.1371/journal.pone.0044151> <PubMed>
14. Paidi MD, Schjoldager JG, Lykkesfeldt J, Tveden-Nyborg P. Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains. Redox Biol 2014; 2: 361–7. <https://doi.org/10.1016/j.redox.2014.01.009> <PubMed>
15. Kim JE, Clark RM, Park Y, Lee J, Fernandez ML. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr Res Pract 2012; 6(2): 113–9. <https://doi.org/10.4162/nrp.2012.6.2.113> <PubMed>
16. Walters SL, Torres-Urbano CJ, Chichester L, Rose RE. The impact of huts on physiological stress: a refinement in post-transport housing of male guinea pigs (Cavia porcellus). Lab Anim 2012; 46(3): 220–4. <https://doi.org/10.1258/la.2011.011116>
17. Pattij T, Groenink L, Hijzen TH, et al. Autonomic changes associated with enhanced anxiety in 5-HT1A receptor knockout mice. Neuropsychopharmacol 2002; 27(3): 380–90. <https://doi.org/10.1016/S0893-133X(02)00317-2>
18. Thompson T, Grabowski-Boase L, Tarantino LM. Prototypical anxiolytics do not reduce anxiety-like behavior in the open field in C57BL/6J mice. Pharmacol Biochem Behav 2015; 133: 7–17. <https://doi.org/10.1016/j.pbb.2015.03.011> <PubMed>
19. Vinkers CH, van Bogaert MJV, Klanker M, et al. Translational aspects of pharmacological research into anxiety disorders: The stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 2008; 585: 407–25. <https://doi.org/10.1016/j.ejphar.2008.02.097>
20. Vinkers CH, de Jong NM, Kalkman CJ, et al. Stress-induced hyperthermia is reduced by rapid-acting anxiolytic drugs independent of injection stress in rats. Pharmacol Biochem Behav 2009; 93: 413–8. <https://doi.org/10.1016/j.pbb.2009.05.017>
21. Renaud SM, Pickens LRG, Fountain SB. Paradoxical effects of injection stress and nicotine exposure experienced during adolescence on learning in a serial multiple choice (SMC) task in adult female rats. Neurotoxicol Teratol 2015; 48: 40–8. <https://doi.org/10.1016/j.ntt.2014.12.003> <PubMed>
22. Davis JN, Courtney CL, Superak H, Taylor DK. Behavioral, clinical and pathological effects of multiple daily intraperitoneal injections on female mice. Lab Anim (NY) 2014; 43(4): 131–9. <https://doi.org/10.1038/laban.433>
23. Pohanka M, Sobotka J, Jilkova M, Stetina R. Oxidative stress after sulfur mustard intoxication and its reduction by melatonin: efficacy of antioxidant therapy during serious intoxication. Drug Chem Toxicol 2010; 34: 85–91. <https://doi.org/10.3109/01480545.2010.505238>
24. Cao G, Cutler RG. Protein oxidation and aging. Arch Biochem Biophys 1995; 320: 106–14. <https://doi.org/10.1006/abbi.1995.1347>
25. Pohanka M, Sobotka J, Stetina R. Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol Lett 2011; 201: 105–9. <https://doi.org/10.1016/j.toxlet.2010.12.011>
26. Subramanian K, Mohideen SS, Suzumura A, et al. Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 2012; 302(1): 18–24. <https://doi.org/10.1016/j.tox.2012.07.006>
27. Oleszko A, Olsztyńska-Janus S, Walski T, et al. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. Biomed Res Int 2015; 2015: 245607.
28. Yi G, Grabež V, Bjelanovic M, et al. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour. Food Chem 2015; 187: 563–71. <https://doi.org/10.1016/j.foodchem.2015.04.002>
29. Berardo A, Claeys E, Vossena E, Leroy F, De Smet S. Protein oxidation affects proteolysis in a meat model system. Meat Sci 2015; 106: 78–84. <https://doi.org/10.1016/j.meatsci.2015.04.002>
30. Wang Z, Wang Y, Liu H, Che Y, Xu Y, E L. Age-related variations of protein carbonyls in human saliva and plasma: is saliva protein carbonyls an alternative biomarker of aging? Age 2015; 37: 48. <https://doi.org/10.1007/s11357-015-9781-1> <PubMed>
31. Reis FG, Marques RH, Starling CM, et al. Stress amplifies lung tissue mechanics, inflammation and oxidative stress induced by chronic inflammation. Exp Lung Res 2012; 38(7): 344–54. <https://doi.org/10.3109/01902148.2012.704484>
32. Zhu Y, Li M, Wang X, et al. Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res 2012; 22(1): 127–41. <https://doi.org/10.1038/cr.2011.82> <PubMed>
33. Lee BR, Lee JH, An HJ. Effects of Taraxacum officinale on fatigue and immunological parameters in mice. Molecules 2012; 17: 13253–65. <https://doi.org/10.3390/molecules171113253> <PubMed>
34. El-Naga RN. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis. Toxicol Appl Pharmacol 2014; 274: 87–95. <https://doi.org/10.1016/j.taap.2013.10.031>
35. Thomsen KL. Regulation of urea synthesis during the acute phase response in rats. Dan Med J 2013; 60(4): B461.
36. Singh JP, Singh AP, Bhatti R. Explicit role of peroxisome proliferator-activated receptor gamma in gallic acid-mediated protection against ischemia-reperfusion-induced acute kidney injury in rats. J Surg Res 2014; 187(2): 631–9. <https://doi.org/10.1016/j.jss.2013.11.1088>
37. Rabe H. [Reference ranges for biochemical parameters in guinea pigs for the Vettest®8008 blood analyzer. (In German with English abstract)] Tierarztl Prax Ausg K Kleintiere Heimtiere 2011; 39(3): 170–175.
38. Kim DH, Jung JS, Moon YS, et al. Inhibition of intracerebroventricular injection stress-induced plasma corticosterone levels by intracerebroventricularly administered compound K, a Ginseng saponin metabolite, in mice. Biol Pharm Bull 2003; 26(7): 1035–8. <https://doi.org/10.1248/bpb.26.1035>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive