Acta Med. 2015, 58: 131-134

https://doi.org/10.14712/18059694.2016.5

Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience

Ilja Tachecía, Věra Radochováb, Jaroslav Květinaa,c, Stanislav Rejchrta, Marcela Kopáčováa, Jan Bureša

a2nd Department of Internal Medicine – Gastroenterology, Charles University in Praha, Faculty of Medicine at Hradec Králové, University Hospital Hradec Králové, Czech Republic
bAnimal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
cInstitute of Experimental Biopharmaceutics, Czech Academy of Sciences, Hradec Králové, Czech Republic

Received October 25, 2015
Accepted November 24, 2015

References

1. Kararli TT. Comparison of the gastrointestinal anatomy, physiology and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16: 351–380. <https://doi.org/10.1002/bdd.2510160502>
2. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 1995; 30: 1–15. <https://doi.org/10.1007/s11095-012-0911-5>
3. Varayil JE, Ali SM, Tacheci I, et al. Electrogastrography in experimental pigs. Methodical design and initial experience. Folia Gastroenterol Hepatol 2009; 7: 98–104. Available from: www.pro-folia.org.
4. Květina J, Edakkanambeth Varayil J, Ali SM, et al. Preclinical electrogastrography in experimental pigs. Interdiscip Toxicol 2010; 3: 53–58. <https://doi.org/10.2478/v10102-010-0011-5> <PubMed>
5. Tacheci I, Kvetina J, Kunes M, et al. Electrogastrography in experimental pigs: the influence of gastrointestinal injury induced by dextran sodium sulphate on porcine gastric erythromycin-stimulated myoelectric activity. Neuroendocrinol Lett 2011; 32, Suppl 1: 131–136.
6. Bures J, Kvetina J, Pavlik M, et al. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro Endocrinol Lett 2013; 34, Suppl 2: 79–83.
7. Tacheci I, Kvetina J, Kunes M, et al. The effect of general anaesthesia on gastric myoelectric activity in experimental pigs. BMC Gastroenterol 2013; 13: 48. <https://doi.org/10.1186/1471-230X-13-48> <PubMed>
8. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 2009.
9. Vicente Y, Da Rocha C, Yu J, Hernandez-Peredo G, Martinez L, Pérez-Mies B, Tovar JA. Architecture and function of the gastroesophageal barrier in the piglet. Dig Dis Sci 2001; 46: 1899–1908. <https://doi.org/10.1023/A:1010631030320>
10. Ciotola F, Ditaranto A, Bilder C, et al. Electrical stimulation to increase lower esophageal sphincter pressure after POEM. Surg Endosc 2015; 29: 230–235. <https://doi.org/10.1007/s00464-014-3643-2>
11. Perretta S, Dallemagne B, Donatelli G, Diemunsch P, Marescaux J. Transoral endoscopic esophageal myotomy based on esophageal function testing in a survival porcine model. Gastrointest Endosc 2011; 73: 111–116. <https://doi.org/10.1016/j.gie.2010.09.009>
12. Narawane NM, Bhatia SJ, Mistry FP, Abraham P, Dherai AJ. Manometric mapping of normal esophagus and definition of the transition zone. Indian J Gastroenterol 1998; 17: 55–57.
13. Kessing BF, Weijenborg PW, Smout AJ, Hillenius S, Bredenoord AJ. Water-perfused esophageal high-resolution manometry: normal values and validation. Am J Physiol Gastrointest Liver Physiol 2014; 306: G491–495. <https://doi.org/10.1152/ajpgi.00447.2013>
14. Weijenborg PW, Kessing BF, Smout AJ, Bredenoord AJ. Normal values for solid-state esophageal high-resolution manometry in a European population; an overview of all current metrics. Neurogastroenterol Motil 2014; 26: 654–659. <https://doi.org/10.1111/nmo.12314>
15. Burgos-Santamaría D, Marinero A, Chavarría-Herbozo CM, Pérez-Fernández T, López-Salazar TR, Santander C. Normal values for water-perfused esophageal high-resolution manometry. Rev Esp Enferm Dig 2015; 107: 354–358.
16. Gehwolf P, Hinder RA, DeVault KR, Edlinger M, Wykypiel HF, Klingler PJ. Significant pressure differences between solid-state and water-perfused systems in lower esophageal sphincter measurement. Surg Endosc 2015; epub ahead of print.
17. Herregods TV, Roman S, Kahrilas PJ, Smout AJ, Bredenoord AJ. Normative values in esophageal high-resolution manometry. Neurogastroenterol Motil 2015; 27: 175–187. <https://doi.org/10.1111/nmo.12500>
18. Kahrilas PJ, Pandolfino JE. High resolution manometry. UpToDate online, vol. 23.1. Alphen aan den Rijn: Wolters Kluwer, 2015. Available from: http://www.uptodate.com.
19. Dantas RO, Alves LM, Cassiani Rde A. Gender differences in proximal esophageal contractions. Gender differences in proximal esophageal contractions. Arq Gastroenterol 2009; 46: 284–287. <https://doi.org/10.1590/S0004-28032009000400007>
20. Dantas RO, Ferriolli E, Souza MAN. Gender effects on esophageal motility. Braz J Med Biol Res 1998; 31: 539–544. <https://doi.org/10.1590/S0100-879X1998000400011>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive