Acta Med. 2015, 58: 135-143

https://doi.org/10.14712/18059694.2016.6

The Evaluation of the Potency of Newly Developed Oximes (K727, K733) and Trimedoxime to Counteract Acute Neurotoxic Effects of Tabun in Rats

Jiří Kassa, Jana Hatlapatková, Jana Žďárová Karasová

Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic

Received November 5, 2015
Accepted December 3, 2015

References

1. Lotti M. Organophosphorus compounds. In: Spencer PS, Schaumburg HH, eds. Experimental and Clinical Neurotoxicology, New York: Oxford University Press, 2000; 898–925.
2. Bajgar J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. Adv Clin Chem 2004; 38: 151–216. <https://doi.org/10.1016/S0065-2423(04)38006-6>
3. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol 2013; 11: 315–35. <https://doi.org/10.2174/1570159X11311030006> <PubMed>
4. Newmark J. Therapy for nerve agent poisoning. Arch Neurol 2004; 61: 649–52. <https://doi.org/10.1001/archneur.61.5.649>
5. Eyer P, Szinicz L, Thiermann H, Worek F, Zilker T. Testing of antidotes for organophosphorus compoumds: Experimental procedures and clinical reality. Toxicology 2007; 233: 108–19. <https://doi.org/10.1016/j.tox.2006.08.033>
6. Marrs TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol Rev 2006; 25: 297–323. <https://doi.org/10.2165/00139709-200625040-00009>
7. Jokanovic M, Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 2009; 16: 2177–88. <https://doi.org/10.2174/092986709788612729>
8. Jokanovic M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr Topic Med Chem 2012; 12: 1775–89. <https://doi.org/10.2174/156802612803989219>
9. Cabal J, Bajgar J. Tabun – reappearance 50 years later (in Czech). Chem Listy 1999; 93: 27–31
10. Ekström F, Akfur C, Tunemalm AK, Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry 2006; 45: 74–81. <https://doi.org/10.1021/bi051286t>
11. Hoffman A, Eisenkraft A, Finkelstein A, Schein O, Rotman E, Dushnitski TI. Adecade after the Tokyo sarin attack: a review of neurological follow-up of the victims. Mil Med 2007; 172: 607–10. <https://doi.org/10.7205/MILMED.172.6.607>
12. Yamasue H, Abe O, Kasai K, et al. Human brain structural changes related to acute single exposure to sarin. Ann Neurol 2007; 61: 37–46. <https://doi.org/10.1002/ana.21024>
13. Frantik E, Hornychova M. Clustering of neurobehavioral measures of toxicity. Homeostasis 1995; 36: 19–25.
14. Jun D, Kuca K, Stodulka P, et al. HPLC analysis of HI-6 dichloride and dimethanesulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal Lett 2007; 40: 2783–87. <https://doi.org/10.1080/00032710701588531>
15. Kassa J, Sepsova V, Tumova M, Horova A, Musilek K. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (K727, K733) with oxime K203 and trimedoxime in tabun-poisoned rats and mice. Bas Clin Pharmacol Toxicol 2015; 116: 367–71. <https://doi.org/10.1111/bcpt.12327>
16. Moser VC, Tilson H, McPhail RC, et al. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. NeuroToxicology 1997; 18: 929–38.
17. Chen Y. Organopshophate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. NeuroToxicology 2012; 33: 391–400. <https://doi.org/10.1016/j.neuro.2012.03.011>
18. Kassa J, Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J Appl Biomed 2006; 4: 123–34. <https://doi.org/10.32725/jab.2006.013>
19. Kassa J, Krejcova G. Neuroprotective effects of currently used antidotes in tabunpoisoned rats. Pharmacol Toxicol 2003; 92: 258–64. <https://doi.org/10.1034/j.1600-0773.2003.920602.x>
20. Kassa J, Bajgar J, Kuca K, Jun D. Behavioral toxicity of nerve agents. In: Gupta RC, ed. Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., New York, Academic Press Elsevier, 2015; 477–87.
21. Lorke DE, Kalasz H, Petroianu GA, Tekes K. Entry of oximes into the brain: A review. Curr Med Chem 2008; 15: 743–53. <https://doi.org/10.2174/092986708783955563>
22. Kalasz H, Nurulain SM, Veress G, et al. Mini-review on blood-brain barrier penetration of pyridinium aldoximes. J Appl Toxicol 2015; 35: 116–23. <https://doi.org/10.1002/jat.3048>
23. de Koning MC, van Grol M, Noort D. Peripheral site ligand conjugation to a non quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol Lett 2011; 206: 54–9. <https://doi.org/10.1016/j.toxlet.2011.04.004>
24. Masson P, Nachon F, Lockridge O. Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact 2010; 187: 157–62. <https://doi.org/10.1016/j.cbi.2010.03.027>
25. Korabecny J, Soukup O, Dolezal R, et al. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev Med Chem 2014; 14: 215–21. <https://doi.org/10.2174/1389557514666140219103138>
26. Cabal J, Kuca K, Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Pharmacol Toxicol 2004; 95: 81–6. <https://doi.org/10.1111/j.1742-7843.2004.950207.x>
27. Kuca K, Jun D, Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev Med Chem 2006; 6: 269–77. <https://doi.org/10.2174/138955706776073510>
28. Musilek K, Kuca K, Jun D, Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr Org Chem 2007; 11: 229–38. <https://doi.org/10.2174/138527207779316417>
29. Musilek K, Dolezal M, Gunn-Moore F, Kuca K. Design, evaluation and structureactivity relationship studies of the AChE reactivators against organophosphorus pesticides. Med Res Rev 2011; 31: 548–75. <https://doi.org/10.1002/med.20192>
30. Musilek K, Holas O, Kuca K, Jun D, Dohnal V, Dolezal M. Synthesis of a novel series of non-symmetrical bispyridinium compounds bearing a xylene linker and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. J Enzym Inhib Med Chem 2007; 22: 425–32. <https://doi.org/10.1080/14756360601164960>
31. Nurulain SM, Lorke DE, Hasan MY, et al. Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: comparison with the conventional oximes pralidoxime and obidoxime. Neurotox Res 2009; 16: 60–7. <https://doi.org/10.1007/s12640-009-9048-7>
32. Musilek K, Holas O, Misik J, et al. Monooxime-monocarbamoyl bispyridinium xylene-linked reactivators of acetylcholinesterase – synthesis, in vitro and toxicity evaluation, and docking studies. ChemMedChem 2010; 5: 247–54. <https://doi.org/10.1002/cmdc.200900455>
33. Kassa J, Karasova J, Bajgar J, Kuca K, Musilek K, Kopelikova I. A comparison of the reactivating and therapeutic efficacy of newly developed bispyridinium oximes (K250, K251) with commonly used oximes against tabun in rats and mice. J Enzym Inhib Med Chem 2009; 24: 1040–4. <https://doi.org/10.1080/14756360802608419>
34. Van Helden HPM, Busker RW, Melchers BPC, Bruijnzeel PLB. Pharmacological effects of oximes: how relevant are they? Arch Toxicol 1996; 70: 779–86. <https://doi.org/10.1007/s002040050340>
35. Sürig U, Gaal K, Kostenis E, Trankle C, Mohr K, Holzgrabe U. Muscarinic allosteric modulators. Atypical structure-activity-relationships in bispyridinium-type compounds. Arch Pharm 2006; 339: 207–12. <https://doi.org/10.1002/ardp.200600005>
36. Niessen KV, Tattersall JEH, Timperley CM, et al. Interaction of bispyridinium compounds with the orthosteric binding site of human α7 and Torpedo californica nicotinic acetylcholine receptors (nAChRs). Toxicol Lett 2011; 206: 100–4. <https://doi.org/10.1016/j.toxlet.2011.06.009>
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive