Acta Med. 2015, 58: 135-143
https://doi.org/10.14712/18059694.2016.6
The Evaluation of the Potency of Newly Developed Oximes (K727, K733) and Trimedoxime to Counteract Acute Neurotoxic Effects of Tabun in Rats
References
1. Lotti M. Organophosphorus compounds. In: Spencer PS, Schaumburg HH, eds. Experimental and Clinical Neurotoxicology, New York: Oxford University Press, 2000; 898–925.
2. J. Organophosphate/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis and treatment. Adv Clin Chem 2004; 38: 151–216.
<https://doi.org/10.1016/S0065-2423(04)38006-6>
3. MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol 2013; 11: 315–35.
<https://doi.org/10.2174/1570159X11311030006>
<PubMed>
4. J. Therapy for nerve agent poisoning. Arch Neurol 2004; 61: 649–52.
<https://doi.org/10.1001/archneur.61.5.649>
5. P, Szinicz L, Thiermann H, Worek F, Zilker T. Testing of antidotes for organophosphorus compoumds: Experimental procedures and clinical reality. Toxicology 2007; 233: 108–19.
<https://doi.org/10.1016/j.tox.2006.08.033>
6. TC, Rice P, Vale JA. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol Rev 2006; 25: 297–323.
<https://doi.org/10.2165/00139709-200625040-00009>
7. M, Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 2009; 16: 2177–88.
<https://doi.org/10.2174/092986709788612729>
8. M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr Topic Med Chem 2012; 12: 1775–89.
<https://doi.org/10.2174/156802612803989219>
9. J, Bajgar J. Tabun – reappearance 50 years later (in Czech). Chem Listy 1999; 93: 27–31
10. F, Akfur C, Tunemalm AK, Lundberg S. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Biochemistry 2006; 45: 74–81.
<https://doi.org/10.1021/bi051286t>
11. A, Eisenkraft A, Finkelstein A, Schein O, Rotman E, Dushnitski TI. Adecade after the Tokyo sarin attack: a review of neurological follow-up of the victims. Mil Med 2007; 172: 607–10.
<https://doi.org/10.7205/MILMED.172.6.607>
12. H, Abe O, Kasai K, et al. Human brain structural changes related to acute single exposure to sarin. Ann Neurol 2007; 61: 37–46.
<https://doi.org/10.1002/ana.21024>
13. E, Hornychova M. Clustering of neurobehavioral measures of toxicity. Homeostasis 1995; 36: 19–25.
14. D, Kuca K, Stodulka P, et al. HPLC analysis of HI-6 dichloride and dimethanesulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal Lett 2007; 40: 2783–87.
<https://doi.org/10.1080/00032710701588531>
15. J, Sepsova V, Tumova M, Horova A, Musilek K. A comparison of the reactivating and therapeutic efficacy of two newly developed oximes (K727, K733) with oxime K203 and trimedoxime in tabun-poisoned rats and mice. Bas Clin Pharmacol Toxicol 2015; 116: 367–71.
<https://doi.org/10.1111/bcpt.12327>
16. VC, Tilson H, McPhail RC, et al. The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. NeuroToxicology 1997; 18: 929–38.
17. Y. Organopshophate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. NeuroToxicology 2012; 33: 391–400.
<https://doi.org/10.1016/j.neuro.2012.03.011>
18. J, Kunesova G. Comparison of the neuroprotective effects of the newly developed oximes (K027, K048) with trimedoxime in tabun-poisoned rats. J Appl Biomed 2006; 4: 123–34.
<https://doi.org/10.32725/jab.2006.013>
19. J, Krejcova G. Neuroprotective effects of currently used antidotes in tabunpoisoned rats. Pharmacol Toxicol 2003; 92: 258–64.
<https://doi.org/10.1034/j.1600-0773.2003.920602.x>
20. Kassa J, Bajgar J, Kuca K, Jun D. Behavioral toxicity of nerve agents. In: Gupta RC, ed. Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., New York, Academic Press Elsevier, 2015; 477–87.
21. DE, Kalasz H, Petroianu GA, Tekes K. Entry of oximes into the brain: A review. Curr Med Chem 2008; 15: 743–53.
<https://doi.org/10.2174/092986708783955563>
22. H, Nurulain SM, Veress G, et al. Mini-review on blood-brain barrier penetration of pyridinium aldoximes. J Appl Toxicol 2015; 35: 116–23.
<https://doi.org/10.1002/jat.3048>
23. MC, van Grol M, Noort D. Peripheral site ligand conjugation to a non quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol Lett 2011; 206: 54–9.
<https://doi.org/10.1016/j.toxlet.2011.04.004>
24. P, Nachon F, Lockridge O. Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact 2010; 187: 157–62.
<https://doi.org/10.1016/j.cbi.2010.03.027>
25. J, Soukup O, Dolezal R, et al. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev Med Chem 2014; 14: 215–21.
<https://doi.org/10.2174/1389557514666140219103138>
26. J, Kuca K, Kassa J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Pharmacol Toxicol 2004; 95: 81–6.
<https://doi.org/10.1111/j.1742-7843.2004.950207.x>
27. K, Jun D, Musilek K. Structural requirements of acetylcholinesterase reactivators. Mini Rev Med Chem 2006; 6: 269–77.
<https://doi.org/10.2174/138955706776073510>
28. K, Kuca K, Jun D, Dolezal M. Progress in synthesis of new acetylcholinesterase reactivators during the period 1990–2004. Curr Org Chem 2007; 11: 229–38.
<https://doi.org/10.2174/138527207779316417>
29. K, Dolezal M, Gunn-Moore F, Kuca K. Design, evaluation and structureactivity relationship studies of the AChE reactivators against organophosphorus pesticides. Med Res Rev 2011; 31: 548–75.
<https://doi.org/10.1002/med.20192>
30. K, Holas O, Kuca K, Jun D, Dohnal V, Dolezal M. Synthesis of a novel series of non-symmetrical bispyridinium compounds bearing a xylene linker and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. J Enzym Inhib Med Chem 2007; 22: 425–32.
<https://doi.org/10.1080/14756360601164960>
31. SM, Lorke DE, Hasan MY, et al. Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: comparison with the conventional oximes pralidoxime and obidoxime. Neurotox Res 2009; 16: 60–7.
<https://doi.org/10.1007/s12640-009-9048-7>
32. K, Holas O, Misik J, et al. Monooxime-monocarbamoyl bispyridinium xylene-linked reactivators of acetylcholinesterase – synthesis, in vitro and toxicity evaluation, and docking studies. ChemMedChem 2010; 5: 247–54.
<https://doi.org/10.1002/cmdc.200900455>
33. J, Karasova J, Bajgar J, Kuca K, Musilek K, Kopelikova I. A comparison of the reactivating and therapeutic efficacy of newly developed bispyridinium oximes (K250, K251) with commonly used oximes against tabun in rats and mice. J Enzym Inhib Med Chem 2009; 24: 1040–4.
<https://doi.org/10.1080/14756360802608419>
34. HPM, Busker RW, Melchers BPC, Bruijnzeel PLB. Pharmacological effects of oximes: how relevant are they? Arch Toxicol 1996; 70: 779–86.
<https://doi.org/10.1007/s002040050340>
35. U, Gaal K, Kostenis E, Trankle C, Mohr K, Holzgrabe U. Muscarinic allosteric modulators. Atypical structure-activity-relationships in bispyridinium-type compounds. Arch Pharm 2006; 339: 207–12.
<https://doi.org/10.1002/ardp.200600005>
36. KV, Tattersall JEH, Timperley CM, et al. Interaction of bispyridinium compounds with the orthosteric binding site of human α7 and Torpedo californica nicotinic acetylcholine receptors (nAChRs). Toxicol Lett 2011; 206: 100–4.
<https://doi.org/10.1016/j.toxlet.2011.06.009>


