Acta Med. 2015, 58: 37-42

https://doi.org/10.14712/18059694.2015.91

Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors

Alžběta Kračmarováa, Lucie Drtinováa, Miroslav Pohankab

aDepartment of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Czech Republic
bDepartment of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Czech Republic

Received March 17, 2015
Accepted May 27, 2015

References

1. Shen ZX. Brain cholinesterases: II. The molecular and cellular basis of Alzheimer’s disease. Med Hypotheses 2004; 63: 308–21. <https://doi.org/10.1016/j.mehy.2004.02.031>
2. Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: Role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem Int 1996; 28: 453–83. <https://doi.org/10.1016/0197-0186(95)00099-2>
3. Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of Tau in Alzheimer’s disease and related disorders CNS. Neurosci Ther 2011; 17: 514–24. <https://doi.org/10.1111/j.1755-5949.2010.00177.x> <PubMed>
4. Weiner MW, Aisen PS, Jack CR et al. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimers Dement 2010; 6: 202–11. <https://doi.org/10.1016/j.jalz.2010.03.007> <PubMed>
5. Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: Implications for early intervention and therapeutics. BBA Mol Basis Dis 2011; 1812: 1359–70. <https://doi.org/10.1016/j.bbadis.2011.08.005> <PubMed>
6. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: From 3D structure to function. Chem Biol Interact 2010; 187: 10–22. <https://doi.org/10.1016/j.cbi.2010.01.042> <PubMed>
7. Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003; 4: 131–8. <https://doi.org/10.1038/nrn1035>
8. Dougherty DA, Stauffer DA. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 1990; 250: 1558–60. <https://doi.org/10.1126/science.2274786>
9. Kozurkova M, Hamulakova S, Gazova Z, Paulikova H, Kristian P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharmaceuticals 2011; 4: 382–418. <https://doi.org/10.3390/ph4020382>
10. Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav R 2011; 35: 1397–409. <https://doi.org/10.1016/j.neubiorev.2011.03.001>
11. Pang YP, Quiram P, Jelacic T, Hong F, Brimijoin S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. Steps toward novel drugs for treating Alzheimer’s disease. J Biol Chem 1996; 271: 23646–9. <https://doi.org/10.1074/jbc.271.39.23646>
12. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosur Ps 1999; 66: 137–47. <https://doi.org/10.1136/jnnp.66.2.137> <PubMed>
13. Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 1989; 260: 625–34. <https://doi.org/10.1042/bj2600625> <PubMed>
14. Paraoanu LE, Steinert G, Koehler A, Wessler I, Layer PG. Expression and possible functions of the cholinergic system in a murine embryonic stem cell line. Life Sci 2007; 80: 2375–9. <https://doi.org/10.1016/j.lfs.2007.03.008>
15. Zhang XJ, Yang L, Zhao Q et al. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 2002; 9: 790–800. <https://doi.org/10.1038/sj.cdd.4401034>
16. Thullbery MD, Cox HD, Schule T, Thompson CM, George KM. Differential localization of acetylcholinesterase in neuronal and non-neuronal cells. J Cell Biochem 2005; 96(3): 599–610. <https://doi.org/10.1002/jcb.20530> <PubMed>
17. Pettersson A, Nilsson L, Nylund G, Khorram-Manesh A, Nordgren S, Delbro DS. Is acetylcholine an autocrine/paracrine growth factor via the nicotinic α7-receptor subtype in the human colon cancer cell line HT-29? Eur J Pharmacol 2009; 609: 27–33. <https://doi.org/10.1016/j.ejphar.2009.03.002>
18. Choi RCY, Yam SCY, Hui B, Wan DCC, Tsim KWK. Over-expression of acetylcholinesterase stimulates the expression of agrin in NG108-15 cells. Neurosci Lett 1998; 248: 17–20. <https://doi.org/10.1016/S0304-3940(98)00320-6>
19. Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 2001; 122: 1961–9. <https://doi.org/10.1016/S0047-6374(01)00309-8>
20. Shah RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ. Current approaches in the treatment of Alzheimer’s disease. Biomed Pharmacoter 2008; 62: 199–207. <https://doi.org/10.1016/j.biopha.2008.02.005>
21. Bonham JR, Dale G, Scott DJ, Wagget J, Atack JR. The characterization of molecular forms of acetylcholinesterase in Hirschprung’s disease. Clin Chim Acta 1999; 171: 263–9. <https://doi.org/10.1016/0009-8981(88)90152-0>
22. Fodero LR, Sáez-Valero J, McLean CA et al. Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. J Neurochem 2002; 81: 441–8. <https://doi.org/10.1046/j.1471-4159.2002.00902.x>
23. Inestrosa NC, Alvarez A, Pérez CA et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron 1996; 16: 881–91. <https://doi.org/10.1016/S0896-6273(00)80108-7>
24. Darvesh S, Cash MK, Andrew Reid G, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is associated with β-Amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2012; 71(1): 2–14. <https://doi.org/10.1097/NEN.0b013e31823cc7a6> <PubMed>
25. Bartolini M, Bertucci C, Cavrini V, Adrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003; 65: 407–16. <https://doi.org/10.1016/S0006-2952(02)01514-9>
26. Silveyra MX, García-Ayllón MS, de Barreda EG et al. Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. Neurobiol Aging 2012; 33: 624.e23–34.
27. Crismon ML. Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 1994; 28(6): 744–51. <https://doi.org/10.1177/106002809402800612>
28. Wagstaff AJ, McTavish D. Tacrine. Drug & Aging 1994; 4(6): 510–40. <https://doi.org/10.2165/00002512-199404060-00006>
29. Alonso D, Dorronsoro I, Rubio L et al. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem 2005; 13: 6588–97. <https://doi.org/10.1016/j.bmc.2005.09.029>
30. Luppi B, Bigucci F, Corace G et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 2011; 44(4): 559–65. <https://doi.org/10.1016/j.ejps.2011.10.002>
31. Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6(1): 61–7. <https://doi.org/10.1016/j.coph.2005.09.007>
32. Kryger G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 1999; 7(3): 297–307. <https://doi.org/10.1016/S0969-2126(99)80040-9>
33. Lilienfeld S. Galantamine – a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev 2002; 8(2): 159–76. <https://doi.org/10.1111/j.1527-3458.2002.tb00221.x> <PubMed>
34. Jann MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy 2000; 20(1): 1–12. <https://doi.org/10.1592/phco.20.1.1.34664>
35. Darreh-Shori T, Hosseini SM, Nordberg A. Pharmacodynamics of cholinesterase inhibitors suggests add-on therapy with a low-dose carbamylating inhibitor in patients on long-term treatment with rapidly reversible inhibitors. J Alzheimers Dis 2014; 39: 423–40. <https://doi.org/10.3233/JAD-130845>
36. Bullock R. The clinical benefits of rivastigmine may reflect its dual inhibitory mode of action: an hypothesis. Int J Clin Pract 2002; 56(3): 206–14.
37. Davidsson P, Blennow K, Andreasen N, Eriksson B, Minthon L, Hesse C. Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Neurosci Lett 2001; 300: 157–60. <https://doi.org/10.1016/S0304-3940(01)01586-5>
38. Parnetti L, Amici S, Lanari A et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol Sci 2002; 23: 95–96. <https://doi.org/10.1007/s100720200086>
39. Darreh-Shori T, Hellström-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J Neurochem 2004; 88: 1102–13. <https://doi.org/10.1046/j.1471-4159.2003.02230.x>
40. Darreh-Shori T, Meurling L, Pettersson T. et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment. J Neural Transm 2006; 113: 1791–801. <https://doi.org/10.1007/s00702-006-0526-2>
41. García-Ayllón MS, Silveyra MX, Andreasen N, Brimijoin S, Blennow K, Sáez-Valero J. Cerebrospinal fluid acetylcholinesterase changes after treatment with donepezil in patients with Alzheimer’s disease. J Neurochem 2007; 101: 1701–11. <https://doi.org/10.1111/j.1471-4159.2007.04461.x>
42. Amici S, Lanari A, Romani R, Antognelli C, Gallai V, Parnetti L. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmina. Mech Ageing Develop 2001; 122: 2057–62. <https://doi.org/10.1016/S0047-6374(01)00314-1>
43. Chiappa S, Padilla S, Koenigsberger C, Moser V, Brimijoin S. Slow accumulation of acetylcholinesterase in rat brain during enzyme inhibition by repeated dosing with chlorpyrofos. Biochem Pharmacol 1995; 19(7): 955–63. <https://doi.org/10.1016/0006-2952(95)00004-J>
44. Zivin M, Pregelj P. Prolonged treatment with donepezil increases acetylcholinesterase expression in the central nervous system. Psychiatr Danub 2008; 20(2): 168–73.
45. Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 1998; 393: 373–7. <https://doi.org/10.1038/30741>
46. Cutler NR, Polinsky RJ, Srarnek JJ et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand 1998; 97(4): 244–50. <https://doi.org/10.1111/j.1600-0404.1998.tb00645.x>
47. Kadir A, Andreasen N, Almkvist O et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol 2008; 63: 621–631. <https://doi.org/10.1002/ana.21345>
48. Hellström-Lindahl E, Moore H, Nordberg A. Increased levels of Tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 2000; 74(2): 777–84. <https://doi.org/10.1046/j.1471-4159.2000.740777.x>
49. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–95. <https://doi.org/10.1016/0006-2952(61)90145-9>
50. García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 2011; 4: 22. <https://doi.org/10.3389/fnmol.2011.00022> <PubMed>
51. Nørgaard-Pedersen B, Hangaard J, Bjerrum OJ. Quantitative enzyme antigen immunoassay of acetylcholinesterase in amniotic fluid. Clin Chem 1983; 29(6): 1061–4. <https://doi.org/10.1093/clinchem/29.6.1061>
52. Lazar M, Salmeron E, Vigny M, Massoulié J. Heavy isotope-labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T 28 hybrid cell line. J Biol Chem 1984; 259: 3703–13.
53. Del Pino J, Zeballos G, Anadon MJ et al. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism. Toxicology 2014; 325: 151–9. <https://doi.org/10.1016/j.tox.2014.09.004>
54. ATCC. Products. Cells and microorganisms. (accessed March 12, 2015 on http://www.lgcstandards-atcc.org/Products/Cells_and_Microorganisms.aspx)
front cover

ISSN 1211-4286 (Print) ISSN 1805-9694 (Online)

Open access journal

Archive