Acta Med. 2015, 58: 37-42
https://doi.org/10.14712/18059694.2015.91
Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors
References
1. Med Hypotheses 2004; 63: 308–21.
< ZX. Brain cholinesterases: II. The molecular and cellular basis of Alzheimer’s disease. https://doi.org/10.1016/j.mehy.2004.02.031>
2. Neurochem Int 1996; 28: 453–83.
< DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: Role in cellular differentiation, tumorigenesis and Alzheimer’s disease. https://doi.org/10.1016/0197-0186(95)00099-2>
3. Neurosci Ther 2011; 17: 514–24.
< R, Baglietto-Vargas D, LaFerla FM. The role of Tau in Alzheimer’s disease and related disorders CNS. https://doi.org/10.1111/j.1755-5949.2010.00177.x>
<PubMed>
4. Alzheimers Dement 2010; 6: 202–11.
< MW, Aisen PS, Jack CR et al. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. https://doi.org/10.1016/j.jalz.2010.03.007>
<PubMed>
5. BBA Mol Basis Dis 2011; 1812: 1359–70.
< P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: Implications for early intervention and therapeutics. https://doi.org/10.1016/j.bbadis.2011.08.005>
<PubMed>
6. Chem Biol Interact 2010; 187: 10–22.
< H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: From 3D structure to function. https://doi.org/10.1016/j.cbi.2010.01.042>
<PubMed>
7. Nat Rev Neurosci 2003; 4: 131–8.
< S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. https://doi.org/10.1038/nrn1035>
8. Science 1990; 250: 1558–60.
< DA, Stauffer DA. Acetylcholine binding by a synthetic receptor: implications for biological recognition. https://doi.org/10.1126/science.2274786>
9. Pharmaceuticals 2011; 4: 382–418.
< M, Hamulakova S, Gazova Z, Paulikova H, Kristian P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. https://doi.org/10.3390/ph4020382>
10. Neurosci Biobehav R 2011; 35: 1397–409.
< LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. https://doi.org/10.1016/j.neubiorev.2011.03.001>
11. J Biol Chem 1996; 271: 23646–9.
< YP, Quiram P, Jelacic T, Hong F, Brimijoin S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. Steps toward novel drugs for treating Alzheimer’s disease. https://doi.org/10.1074/jbc.271.39.23646>
12. J Neurol Neurosur Ps 1999; 66: 137–47.
< PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. https://doi.org/10.1136/jnnp.66.2.137>
<PubMed>
13. Biochem J 1989; 260: 625–34.
< A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. https://doi.org/10.1042/bj2600625>
<PubMed>
14. Life Sci 2007; 80: 2375–9.
< LE, Steinert G, Koehler A, Wessler I, Layer PG. Expression and possible functions of the cholinergic system in a murine embryonic stem cell line. https://doi.org/10.1016/j.lfs.2007.03.008>
15. Cell Death Differ 2002; 9: 790–800.
< XJ, Yang L, Zhao Q et al. Induction of acetylcholinesterase expression during apoptosis in various cell types. https://doi.org/10.1038/sj.cdd.4401034>
16. J Cell Biochem 2005; 96(3): 599–610.
< MD, Cox HD, Schule T, Thompson CM, George KM. Differential localization of acetylcholinesterase in neuronal and non-neuronal cells. https://doi.org/10.1002/jcb.20530>
<PubMed>
17. Eur J Pharmacol 2009; 609: 27–33.
< A, Nilsson L, Nylund G, Khorram-Manesh A, Nordgren S, Delbro DS. Is acetylcholine an autocrine/paracrine growth factor via the nicotinic α7-receptor subtype in the human colon cancer cell line HT-29? https://doi.org/10.1016/j.ejphar.2009.03.002>
18. Neurosci Lett 1998; 248: 17–20.
< RCY, Yam SCY, Hui B, Wan DCC, Tsim KWK. Over-expression of acetylcholinesterase stimulates the expression of agrin in NG108-15 cells. https://doi.org/10.1016/S0304-3940(98)00320-6>
19. Mech Ageing Dev 2001; 122: 1961–9.
< VN. Acetylcholinesterase in Alzheimer’s disease. https://doi.org/10.1016/S0047-6374(01)00309-8>
20. Biomed Pharmacoter 2008; 62: 199–207.
< RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ. Current approaches in the treatment of Alzheimer’s disease. https://doi.org/10.1016/j.biopha.2008.02.005>
21. Clin Chim Acta 1999; 171: 263–9.
< JR, Dale G, Scott DJ, Wagget J, Atack JR. The characterization of molecular forms of acetylcholinesterase in Hirschprung’s disease. https://doi.org/10.1016/0009-8981(88)90152-0>
22. J Neurochem 2002; 81: 441–8.
< LR, Sáez-Valero J, McLean CA et al. Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. https://doi.org/10.1046/j.1471-4159.2002.00902.x>
23. Neuron 1996; 16: 881–91.
< NC, Alvarez A, Pérez CA et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. https://doi.org/10.1016/S0896-6273(00)80108-7>
24. J Neuropathol Exp Neurol 2012; 71(1): 2–14.
< S, Cash MK, Andrew Reid G, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is associated with β-Amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. https://doi.org/10.1097/NEN.0b013e31823cc7a6>
<PubMed>
25. Biochem Pharmacol 2003; 65: 407–16.
< M, Bertucci C, Cavrini V, Adrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. https://doi.org/10.1016/S0006-2952(02)01514-9>
26. Neurobiol Aging 2012; 33: 624.e23–34.
MX, García-Ayllón MS, de Barreda EG et al. Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice.
27. Ann Pharmacother 1994; 28(6): 744–51.
< ML. Tacrine: first drug approved for Alzheimer’s disease. https://doi.org/10.1177/106002809402800612>
28. Drug & Aging 1994; 4(6): 510–40.
< AJ, McTavish D. Tacrine. https://doi.org/10.2165/00002512-199404060-00006>
29. Bioorg Med Chem 2005; 13: 6588–97.
< D, Dorronsoro I, Rubio L et al. Donepezil–tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. https://doi.org/10.1016/j.bmc.2005.09.029>
30. Eur J Pharm Sci 2011; 44(4): 559–65.
< B, Bigucci F, Corace G et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. https://doi.org/10.1016/j.ejps.2011.10.002>
31. Curr Opin Pharmacol 2006; 6(1): 61–7.
< JW, Kotermanski SE. Mechanism of action of memantine. https://doi.org/10.1016/j.coph.2005.09.007>
32. Structure 1999; 7(3): 297–307.
< G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. https://doi.org/10.1016/S0969-2126(99)80040-9>
33. CNS Drug Rev 2002; 8(2): 159–76.
< S. Galantamine – a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. https://doi.org/10.1111/j.1527-3458.2002.tb00221.x>
<PubMed>
34. Pharmacotherapy 2000; 20(1): 1–12.
< MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. https://doi.org/10.1592/phco.20.1.1.34664>
35. J Alzheimers Dis 2014; 39: 423–40.
< T, Hosseini SM, Nordberg A. Pharmacodynamics of cholinesterase inhibitors suggests add-on therapy with a low-dose carbamylating inhibitor in patients on long-term treatment with rapidly reversible inhibitors. https://doi.org/10.3233/JAD-130845>
36. Int J Clin Pract 2002; 56(3): 206–14.
R. The clinical benefits of rivastigmine may reflect its dual inhibitory mode of action: an hypothesis.
37. Neurosci Lett 2001; 300: 157–60.
< P, Blennow K, Andreasen N, Eriksson B, Minthon L, Hesse C. Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer’s disease. https://doi.org/10.1016/S0304-3940(01)01586-5>
38. Neurol Sci 2002; 23: 95–96.
< L, Amici S, Lanari A et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. https://doi.org/10.1007/s100720200086>
39. J Neurochem 2004; 88: 1102–13.
< T, Hellström-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A. Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. https://doi.org/10.1046/j.1471-4159.2003.02230.x>
40. J Neural Transm 2006; 113: 1791–801.
< T, Meurling L, Pettersson T. et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment. https://doi.org/10.1007/s00702-006-0526-2>
41. J Neurochem 2007; 101: 1701–11.
< MS, Silveyra MX, Andreasen N, Brimijoin S, Blennow K, Sáez-Valero J. Cerebrospinal fluid acetylcholinesterase changes after treatment with donepezil in patients with Alzheimer’s disease. https://doi.org/10.1111/j.1471-4159.2007.04461.x>
42. Mech Ageing Develop 2001; 122: 2057–62.
< S, Lanari A, Romani R, Antognelli C, Gallai V, Parnetti L. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmina. https://doi.org/10.1016/S0047-6374(01)00314-1>
43. Biochem Pharmacol 1995; 19(7): 955–63.
< S, Padilla S, Koenigsberger C, Moser V, Brimijoin S. Slow accumulation of acetylcholinesterase in rat brain during enzyme inhibition by repeated dosing with chlorpyrofos. https://doi.org/10.1016/0006-2952(95)00004-J>
44. Psychiatr Danub 2008; 20(2): 168–73.
M, Pregelj P. Prolonged treatment with donepezil increases acetylcholinesterase expression in the central nervous system.
45. Nature 1998; 393: 373–7.
< D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. https://doi.org/10.1038/30741>
46. Acta Neurol Scand 1998; 97(4): 244–50.
< NR, Polinsky RJ, Srarnek JJ et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. https://doi.org/10.1111/j.1600-0404.1998.tb00645.x>
47. Ann Neurol 2008; 63: 621–631.
< A, Andreasen N, Almkvist O et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. https://doi.org/10.1002/ana.21345>
48. J Neurochem 2000; 74(2): 777–84.
< E, Moore H, Nordberg A. Increased levels of Tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. https://doi.org/10.1046/j.1471-4159.2000.740777.x>
49. Biochem Pharmacol 1961; 7: 88–95.
< GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. https://doi.org/10.1016/0006-2952(61)90145-9>
50. Front Mol Neurosci 2011; 4: 22.
< MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. https://doi.org/10.3389/fnmol.2011.00022>
<PubMed>
51. Clin Chem 1983; 29(6): 1061–4.
< B, Hangaard J, Bjerrum OJ. Quantitative enzyme antigen immunoassay of acetylcholinesterase in amniotic fluid. https://doi.org/10.1093/clinchem/29.6.1061>
52. J Biol Chem 1984; 259: 3703–13.
M, Salmeron E, Vigny M, Massoulié J. Heavy isotope-labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T 28 hybrid cell line.
53. Toxicology 2014; 325: 151–9.
< J, Zeballos G, Anadon MJ et al. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism. https://doi.org/10.1016/j.tox.2014.09.004>
54. ATCC. Products. Cells and microorganisms. (accessed March 12, 2015 on http://www.lgcstandards-atcc.org/Products/Cells_and_Microorganisms.aspx)