Acta Med. 2015, 58: 3-8
https://doi.org/10.14712/18059694.2015.84
Extracorporeal Elimination of Circulating Pegylated Liposomal Doxorubicin (PLD) to Enhance the Benefit of Cytostatic Therapy in Platinum-Resistant Ovarian Cancer Patients
References
1. Ann Oncol 2013; 24 Suppl 6: vi24–32.
< JA, Raja FA, Fotopoulou C et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. https://doi.org/10.1093/annonc/mdt333>
2. J Exp Clin Cancer Res 2012; 31: 14.
< A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. https://doi.org/10.1186/1756-9966-31-14>
<PubMed>
3. Fleming GF, Ronnett BM, Seidman J. Epithelial ovarian cancer. In Barakat RR, Markman M, Randall M (eds): Principles and practice of gynecologic oncology, 5th Edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins 2009; 763–836.
4. Scully RE, Sobin LH, Serov SF. Histological typing of ovarian tumours. Berlin, New York: Springer 1999.
5. Obstet Gynecol 1999; 93: 21–24.
< SC, Randall TC, Armstrong KA et al. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. https://doi.org/10.1016/S0029-7844(98)00334-2>
6. Int J Gynecol Cancer 2011; 21: 771–775.
< M, Trimble E, Tinker A et al. Clinical trials in recurrent ovarian cancer. https://doi.org/10.1097/IGC.0b013e31821bb8aa>
7. National Comprehensive Cancer Network (NCCN): NCCN Clinical Practice Guidelines in Oncology. Ovarian cancer Version 2.2013 (online). Available at: http: //www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf. (3 January 2014, date last accessed).
8. Remedia 2008; 18: 407–415.
L. Pegylovaný lipozomální doxorubicin.
9. Int J Nanomedicine. 2015; 10: 975–99.
< G, Molinari A. Liposomes as nanomedical devices. https://doi.org/10.2147/IJN.S68861>
<PubMed>
10. J Control Release 2000; 65: 271–284.
< H, Wu J, Sawa T et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. https://doi.org/10.1016/S0168-3659(99)00248-5>
11. Proc Natl Acad Sci U S A 1991; 88: 11460–11464.
< D, Allen TM, Gabizon A et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. https://doi.org/10.1073/pnas.88.24.11460>
<PubMed>
12. Clin Lymphoma Myeloma 2008; 8: 21–32.
< R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. https://doi.org/10.3816/CLM.2008.n.001>
13. Caelyx – Product information (online). Date of Most Recent Amendment: 22 Oct- ober 2013. Available at: http://www.janssen.com.au/files/Products/Caelyx _PI.pdf?cdc150d5ce85dca0aaf4926b5d83144c. (3 May 2014, date last accessed).
14. Int J Nanomedicine 2006; 1: 229–239.
AE, Rose PG. Pegylated liposomal doxorubicin in ovarian cancer.
15. Pharmacol Rev 2004; 56: 185–229.
< G, Menna P, Salvatorelli E et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. https://doi.org/10.1124/pr.56.2.6>
16. Drugs 1997; 54 Suppl 4: 1–7.
< GN. Anthracyclines in the treatment of cancer. An overview. https://doi.org/10.2165/00003495-199700544-00003>
17. Cancer Res 1972; 32: 1137–42
VD, Bachur NR. Inhibition of DNA and RNA metabolism by daunorubicin and adriamycin in L1210 mouse leukemia,
18. Biochem Pharmacol 1987; 36: 793–796.
< BK, Katki AG, Batist G et al. Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. https://doi.org/10.1016/0006-2952(87)90164-X>
19. Semin Oncol 1996; 23: 23–34.
RT. Cytoprotective agents for anthracyclines.
20. J Clin Oncol 1995; 13: 1777–1785.
< B, Jeffers S, Isacson R et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. https://doi.org/10.1200/JCO.1995.13.7.1777>
21. Arch Dermatol 2000; 136: 1475–1480.
< M, Hubert A, Lyass O et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. https://doi.org/10.1001/archderm.136.12.1475>
22. J Clin Oncol 2001; 19: 3312–3322.
< AN, Fleagle JT, Guthrie D et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. https://doi.org/10.1200/JCO.2001.19.14.3312>
23. Am J Clin Dermatol 2000; 1: 225–234.
< E, Insa A, Sanmartin O. Antineoplastic therapy-induced palmar plantar erythrodysesthesia (‘hand-foot’) syndrome. Incidence, recognition and management. https://doi.org/10.2165/00128071-200001040-00004>
24. Cancer Invest 2001; 19: 424–436.
< AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. https://doi.org/10.1081/CNV-100103136>
25. Anticancer Res 2009; 29: 2307–2313.
A, Sehouli J, Patzelt A et al. The pathogenetic mechanism of anthracycline-induced palmar-plantar erythrodysesthesia.
26. Arch Dermatol 1986; 122: 1413–1414.
< GJ, Robertson DB. Toxic erythema of palms and soles associated with high-dose mercaptopurine chemotherapy. https://doi.org/10.1001/archderm.1986.01660240077020>
27. Hum Cell 2013; 26: 8–18.
< N, Nagasawa T, Coler-Reilly A et al. Pathogenesis of Hand-Foot Syndrome induced by PEG- modified liposomal Doxorubicin. https://doi.org/10.1007/s13577-012-0057-0>
<PubMed>
28. Cancer 2000; 89: 1037–1047.
< O, Uziely B, Ben-Yosef R et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. https://doi.org/10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z>
29. J Clin Oncol 1997; 15: 987–993.
< FM, Hainsworth JD, Jeffers S et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. https://doi.org/10.1200/JCO.1997.15.3.987>
30. Eur J Pharm Sci 2012; 45: 388–398.
< A, Shmeeda H, Grenader T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. https://doi.org/10.1016/j.ejps.2011.09.006>
31. Gabizon A. Applications of liposomal drug delivery systems to cancer therapy. In Mansoor MA (ed) Nanotechnology for Cancer Therapy. New York, USA: CRC Press 2006; 595–611.
32. Cancer Res. 1983; 43: 3417–21.
RF, Collins JM, Jenkins JF et al. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experimentsand treatment protocols.
33. Cancer Res. 1986; 46: 2295–9.
A, Carmichael D, Harris M, Roh JK. Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes.
34. Clin Pharmacol Ther. 1993; 53: 555–61.
< SC1, Rodvold KA, Rushing DA, Tewksbury DA. Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. https://doi.org/10.1038/clpt.1993.69>
35. Cancer Res 1994; 54: 987–992.
A, Catane R, Uziely B et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.
36. Jpn J Clin Oncol 2006; 36: 768–774.
< Y, Horiike A, Shimizu T et al. Phase 1 clinical study of pegylated liposomal doxorubicin (JNS002) in Japanese patients with solid tumors. https://doi.org/10.1093/jjco/hyl109>
37. Hum Exp Toxicol 1999; 18: 17–26.
< M, Newman MS, Sullivan TM et al. Relationship of dose intensity to the induction of palmar-plantar erythrodysesthia by pegylated liposomal doxorubicin in dogs. https://doi.org/10.1191/096032799678839347>
38. Clin Pharmacol Ther 1997; 61: 301–311.
< MA, Forrest A, Northfelt DW, Mamelok R. Population pharmacokinetics and pharmacodynamics of pegylated-liposomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. https://doi.org/10.1016/S0009-9236(97)90162-4>
39. Adv Drug Deliv Rev 2011; 63: 136–151.
< J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. https://doi.org/10.1016/j.addr.2010.04.009>
40. Cancer Res 1986; 46: 6387–6392.
Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.
41. Adv Drug Deliv Rev 2001; 46: 169–185.
< H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. https://doi.org/10.1016/S0169-409X(00)00134-4>
42. Cancer 1994; 73: 1478–1484.
< J, Barbera-Guillem E, Abra R et al. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. https://doi.org/10.1002/1097-0142(19940301)73:5<1478::AID-CNCR2820730526>3.0.CO;2-1>
43. Adv Drug Deliv Rev 1997; 24: 337–344.
< A, Goren D, Horowitz AT et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. https://doi.org/10.1016/S0169-409X(96)00476-0>
44. Van Rooijen N. The Liposome-Mediated “Macrophage Suicide” Technique: A Tool to Study and Manipulate Macrophage Activities. In Gregoriadis G (ed) Liposome Technology, 3rd Edition. New York, USA: Informa Healthcare 2006; 303–315.
45. Cancer Chemother Pharmacol 2012; 69: 43–50.
< NM, Zamboni BA, Gabizon A et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. https://doi.org/10.1007/s00280-011-1664-2>
46. Cancer Chemother Pharmacol 2008; 61: 695–702.
< A, Isacson R, Rosengarten O et al. An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. https://doi.org/10.1007/s00280-007-0525-5>
47. Gynecol Oncol 2013; 131: 683–688.
< EM, Lippmann Q, Caron WP et al. Clinical risk factors of PEGylated liposomal doxorubicin induced palmar plantar erythrodysesthesia in recurrent ovarian cancer patients. https://doi.org/10.1016/j.ygyno.2013.09.031>
48. Semin Oncol Nurs 2003; 19: 19–39.
< SJ. Prevention and treatment of adverse effects related to chemotherapy for recurrent ovarian cancer. https://doi.org/10.1016/S0749-2081(03)00059-7>
49. Clin Cancer Res 1998; 4: 1567–1571.
DM, Chun R, Thamm DH et al. Efficacy of pyridoxine to ameliorate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind clinical trial using a canine model.
50. BMC Cancer 2011; 11: 337.
< J, Schmah O, Siebers JW et al. Kinetic targeting of pegylated liposomal doxorubicin: a new approach to reduce toxicity during chemotherapy (CARL-trial). https://doi.org/10.1186/1471-2407-11-337>
<PubMed>
51. Clin Cancer Res 2001; 7: 243–254.
KJ, Mohammadtaghi S, Uster PS et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.
52. Med Hypotheses 2009; 72: 393–397.
< G, Schmah O, Eckes J et al. Controlled application and scheduled removal of nanoparticle based chemotherapeutics (CARL) will reduce dose limiting adverse events in anticancer chemotherapy. https://doi.org/10.1016/j.mehy.2008.11.027>
53. J Clin Apher 2010; 25: 54–62.
< G, Schmah O, Eckes J et al. Controlled application and removal of liposomal therapeutics: effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. https://doi.org/10.1002/jca.20229>
54. J Pharmacol Exp Ther 2003; 306: 1058–1067.
< GJ, Allen TM. Multiple injections of pegylated liposomal Doxorubicin: pharmacokinetics and therapeutic activity. https://doi.org/10.1124/jpet.103.053413>
55. Transfus Apher Sci 2009; 41: 49–59.
< H. 26 years of LDL-apheresis: a review of experience. https://doi.org/10.1016/j.transci.2009.05.013>
56. Ther Apher Dial 2008; 12: 2–12.
< G, Eckes J, Schmah O et al. Elimination of liposomes by different separation principles used in low-density lipoprotein apheresis. https://doi.org/10.1111/j.1744-9987.2007.00535.x>
57. Ther Apher Dial 2003; 7: 350–358.
< R, Fassbender T, Fassbender C, Gohlen B. From membrane differential filtration to lipidfiltration: technological progress in low-density lipoprotein apheresis. https://doi.org/10.1046/j.1526-0968.2003.00062.x>
58. Liver Transpl 2008; 14: 1044–1047.
< Y, Ito T, Ueda Y et al. Effects of double-filtration plasmapheresis combined with interferon plus ribavirin for recurrent hepatitis C after living donor liver transplantation. https://doi.org/10.1002/lt.21441>
59. Ther Apher 2005; 9: 459–468.
< T. Therapeutic Apheresis-State of the Art in the Year 2005. https://doi.org/10.1111/j.1744-9987.2005.00306.x>
60. Ther Apher Dial 2004; 8: 124–143.
< PS, Koo AP, Roberson GA et al. Apheresis technologies and clinical applications: the 2002 international apheresis registry. https://doi.org/10.1111/j.1526-0968.2003.00126.x>
61. Science 2004; 303: 1818–1822.
< TM, Cullis PR. Drug delivery systems: entering the mainstream. https://doi.org/10.1126/science.1095833>
62. Atheroscler Suppl. 2013; 14: 179–84.
< M, Rencova E, Langrova H et al. Rheohaemapheresis in the treatment of nonvascular age-related macular degeneration. https://doi.org/10.1016/j.atherosclerosissup.2012.10.023>
63. Clin Hemorheol Microcirc. 2009; 42: 37–46.
< M, Rencova E, Blaha V et al. The importance of rheological parameters in the therapy of microcirculatory disorders. https://doi.org/10.3233/CH-2009-1184>